用于克服类Fenton催化中尖晶石氧化物的活性-稳定性权衡的结晶工程。

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Zhi-Yan Guo, Rongbo Sun, Zixiang Huang, Xiao Han, Haoran Wang, Cai Chen, Yu-Qin Liu, Xusheng Zheng, Wenjun Zhang, Xun Hong, Wen-Wei Li
{"title":"用于克服类Fenton催化中尖晶石氧化物的活性-稳定性权衡的结晶工程。","authors":"Zhi-Yan Guo,&nbsp;Rongbo Sun,&nbsp;Zixiang Huang,&nbsp;Xiao Han,&nbsp;Haoran Wang,&nbsp;Cai Chen,&nbsp;Yu-Qin Liu,&nbsp;Xusheng Zheng,&nbsp;Wenjun Zhang,&nbsp;Xun Hong,&nbsp;Wen-Wei Li","doi":"10.1073/pnas.2220608120","DOIUrl":null,"url":null,"abstract":"<p><p>A precise modulation of heterogeneous catalysts in structural and surface properties promises the development of more sustainable advanced oxidation water purification technologies. However, while catalysts with superior decontamination activity and selectivity are already achievable, maintaining a long-term service life of such materials remains challenging. Here, we propose a crystallinity engineering strategy to break the activity-stability tradeoff of metal oxides in Fenton-like catalysis. The amorphous/crystalline cobalt-manganese spinel oxide (A/C-CoMnO<sub>x</sub>) provided highly active, hydroxyl group-rich surface, with moderate peroxymonosulfate (PMS)-binding affinity and charge transfer energy and strong pollutant adsorption, to trigger concerted radical and nonradical reactions for efficient pollutant mineralization, thereby alleviating the catalyst passivation by oxidation intermediate accumulation. Meanwhile, the surface-confined reactions, benefited from the enhanced adsorption of pollutants at A/C interface, rendered the A/C-CoMnO<sub>x</sub>/PMS system ultrahigh PMS utilization efficiency (82.2%) and unprecedented decontamination activity (rate constant of 1.48 min<sup>-1</sup>) surpassing almost all the state-of-the-art heterogeneous Fenton-like catalysts. The superior cyclic stability and environmental robustness of the system for real water treatment was also demonstrated. Our work unveils a critical role of material crystallinity in modulating the Fenton-like catalytic activity and pathways of metal oxides, which fundamentally improves our understanding of the structure-activity-selectivity relationships of heterogeneous catalysts and may inspire material design for more sustainable water purification application and beyond.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"120 15","pages":"e2220608120"},"PeriodicalIF":9.4000,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/89/2f/pnas.202220608.PMC10104503.pdf","citationCount":"11","resultStr":"{\"title\":\"Crystallinity engineering for overcoming the activity-stability tradeoff of spinel oxide in Fenton-like catalysis.\",\"authors\":\"Zhi-Yan Guo,&nbsp;Rongbo Sun,&nbsp;Zixiang Huang,&nbsp;Xiao Han,&nbsp;Haoran Wang,&nbsp;Cai Chen,&nbsp;Yu-Qin Liu,&nbsp;Xusheng Zheng,&nbsp;Wenjun Zhang,&nbsp;Xun Hong,&nbsp;Wen-Wei Li\",\"doi\":\"10.1073/pnas.2220608120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A precise modulation of heterogeneous catalysts in structural and surface properties promises the development of more sustainable advanced oxidation water purification technologies. However, while catalysts with superior decontamination activity and selectivity are already achievable, maintaining a long-term service life of such materials remains challenging. Here, we propose a crystallinity engineering strategy to break the activity-stability tradeoff of metal oxides in Fenton-like catalysis. The amorphous/crystalline cobalt-manganese spinel oxide (A/C-CoMnO<sub>x</sub>) provided highly active, hydroxyl group-rich surface, with moderate peroxymonosulfate (PMS)-binding affinity and charge transfer energy and strong pollutant adsorption, to trigger concerted radical and nonradical reactions for efficient pollutant mineralization, thereby alleviating the catalyst passivation by oxidation intermediate accumulation. Meanwhile, the surface-confined reactions, benefited from the enhanced adsorption of pollutants at A/C interface, rendered the A/C-CoMnO<sub>x</sub>/PMS system ultrahigh PMS utilization efficiency (82.2%) and unprecedented decontamination activity (rate constant of 1.48 min<sup>-1</sup>) surpassing almost all the state-of-the-art heterogeneous Fenton-like catalysts. The superior cyclic stability and environmental robustness of the system for real water treatment was also demonstrated. Our work unveils a critical role of material crystallinity in modulating the Fenton-like catalytic activity and pathways of metal oxides, which fundamentally improves our understanding of the structure-activity-selectivity relationships of heterogeneous catalysts and may inspire material design for more sustainable water purification application and beyond.</p>\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":\"120 15\",\"pages\":\"e2220608120\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2023-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/89/2f/pnas.202220608.PMC10104503.pdf\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2220608120\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/4/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2220608120","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 11

摘要

对多相催化剂结构和表面性能的精确调节有望开发出更可持续的先进氧化水净化技术。然而,尽管具有优异去污活性和选择性的催化剂已经可以实现,但保持这种材料的长期使用寿命仍然具有挑战性。在这里,我们提出了一种结晶度工程策略,以打破类芬顿催化中金属氧化物的活性-稳定性权衡。无定形/结晶钴锰尖晶石氧化物(A/C-CoMnOx)提供了高度活性、富含羟基的表面,具有中等的过氧一硫酸盐(PMS)结合亲和力和电荷转移能以及强的污染物吸附,以引发协同的自由基和非自由基反应,实现有效的污染物矿化,从而减轻由于氧化中间体积累而导致的催化剂钝化。同时,由于A/C界面对污染物的吸附增强,表面受限反应使A/C-CoMnOx/PMS系统具有超高的PMS利用效率(82.2%)和前所未有的去污活性(速率常数为1.48min-1),几乎超过了所有最先进的非均相类芬顿催化剂。该系统在实际水处理中具有良好的循环稳定性和环境鲁棒性。我们的工作揭示了材料结晶度在调节类芬顿催化活性和金属氧化物途径中的关键作用,这从根本上提高了我们对多相催化剂结构-活性-选择性关系的理解,并可能启发材料设计,以实现更可持续的水净化应用及其他应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Crystallinity engineering for overcoming the activity-stability tradeoff of spinel oxide in Fenton-like catalysis.

Crystallinity engineering for overcoming the activity-stability tradeoff of spinel oxide in Fenton-like catalysis.

Crystallinity engineering for overcoming the activity-stability tradeoff of spinel oxide in Fenton-like catalysis.

Crystallinity engineering for overcoming the activity-stability tradeoff of spinel oxide in Fenton-like catalysis.

A precise modulation of heterogeneous catalysts in structural and surface properties promises the development of more sustainable advanced oxidation water purification technologies. However, while catalysts with superior decontamination activity and selectivity are already achievable, maintaining a long-term service life of such materials remains challenging. Here, we propose a crystallinity engineering strategy to break the activity-stability tradeoff of metal oxides in Fenton-like catalysis. The amorphous/crystalline cobalt-manganese spinel oxide (A/C-CoMnOx) provided highly active, hydroxyl group-rich surface, with moderate peroxymonosulfate (PMS)-binding affinity and charge transfer energy and strong pollutant adsorption, to trigger concerted radical and nonradical reactions for efficient pollutant mineralization, thereby alleviating the catalyst passivation by oxidation intermediate accumulation. Meanwhile, the surface-confined reactions, benefited from the enhanced adsorption of pollutants at A/C interface, rendered the A/C-CoMnOx/PMS system ultrahigh PMS utilization efficiency (82.2%) and unprecedented decontamination activity (rate constant of 1.48 min-1) surpassing almost all the state-of-the-art heterogeneous Fenton-like catalysts. The superior cyclic stability and environmental robustness of the system for real water treatment was also demonstrated. Our work unveils a critical role of material crystallinity in modulating the Fenton-like catalytic activity and pathways of metal oxides, which fundamentally improves our understanding of the structure-activity-selectivity relationships of heterogeneous catalysts and may inspire material design for more sustainable water purification application and beyond.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信