{"title":"胰岛素清除在健康和疾病。","authors":"Sonia M Najjar, Sonia Caprio, Amalia Gastaldelli","doi":"10.1146/annurev-physiol-031622-043133","DOIUrl":null,"url":null,"abstract":"<p><p>Insulin action is impaired in type 2 diabetes. The functions of the hormone are an integrated product of insulin secretion from pancreatic β-cells and insulin clearance by receptor-mediated endocytosis and degradation, mostly in liver (hepatocytes) and, to a lower extent, in extrahepatic peripheral tissues. Substantial evidence indicates that genetic or acquired abnormalities of insulin secretion or action predispose to type 2 diabetes. In recent years, along with the discovery of the molecular foundation of receptor-mediated insulin clearance, such as through the membrane glycoprotein CEACAM1, a consensus has begun to emerge that reduction of insulin clearance contributes to the disease process. In this review, we consider the evidence suggesting a pathogenic role for reduced insulin clearance in insulin resistance, obesity, hepatic steatosis, and type 2 diabetes.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":"85 ","pages":"363-381"},"PeriodicalIF":15.7000,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Insulin Clearance in Health and Disease.\",\"authors\":\"Sonia M Najjar, Sonia Caprio, Amalia Gastaldelli\",\"doi\":\"10.1146/annurev-physiol-031622-043133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Insulin action is impaired in type 2 diabetes. The functions of the hormone are an integrated product of insulin secretion from pancreatic β-cells and insulin clearance by receptor-mediated endocytosis and degradation, mostly in liver (hepatocytes) and, to a lower extent, in extrahepatic peripheral tissues. Substantial evidence indicates that genetic or acquired abnormalities of insulin secretion or action predispose to type 2 diabetes. In recent years, along with the discovery of the molecular foundation of receptor-mediated insulin clearance, such as through the membrane glycoprotein CEACAM1, a consensus has begun to emerge that reduction of insulin clearance contributes to the disease process. In this review, we consider the evidence suggesting a pathogenic role for reduced insulin clearance in insulin resistance, obesity, hepatic steatosis, and type 2 diabetes.</p>\",\"PeriodicalId\":8196,\"journal\":{\"name\":\"Annual review of physiology\",\"volume\":\"85 \",\"pages\":\"363-381\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2023-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-physiol-031622-043133\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-physiol-031622-043133","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Insulin action is impaired in type 2 diabetes. The functions of the hormone are an integrated product of insulin secretion from pancreatic β-cells and insulin clearance by receptor-mediated endocytosis and degradation, mostly in liver (hepatocytes) and, to a lower extent, in extrahepatic peripheral tissues. Substantial evidence indicates that genetic or acquired abnormalities of insulin secretion or action predispose to type 2 diabetes. In recent years, along with the discovery of the molecular foundation of receptor-mediated insulin clearance, such as through the membrane glycoprotein CEACAM1, a consensus has begun to emerge that reduction of insulin clearance contributes to the disease process. In this review, we consider the evidence suggesting a pathogenic role for reduced insulin clearance in insulin resistance, obesity, hepatic steatosis, and type 2 diabetes.
期刊介绍:
Since 1939, the Annual Review of Physiology has been highlighting significant developments in animal physiology. The journal covers diverse areas, including cardiovascular physiology, cell physiology, ecological, evolutionary, and comparative physiology, endocrinology, gastrointestinal physiology, neurophysiology, renal and electrolyte physiology, respiratory physiology, and special topics.