机器学习技术在颅内出血ct诊断和分类中的应用

Q4 Medicine
A K Smorchkova, A N Khoruzhaya, E I Kremneva, A V Petryaikin
{"title":"机器学习技术在颅内出血ct诊断和分类中的应用","authors":"A K Smorchkova, A N Khoruzhaya, E I Kremneva, A V Petryaikin","doi":"10.17116/neiro20238702185","DOIUrl":null,"url":null,"abstract":"<p><p>This review discusses pooled experience of creation, implementation and effectiveness of machine learning technologies in CT-based diagnosis of intracranial hemorrhages. The authors analyzed 21 original articles between 2015 and 2022 using the following keywords: «intracranial hemorrhage», «machine learning», «deep learning», «artificial intelligence». The review contains general data on basic concepts of machine learning and also considers in more detail such aspects as technical characteristics of data sets used for creation of AI algorithms for certain type of clinical task, their possible impact on effectiveness and clinical experience.</p>","PeriodicalId":24032,"journal":{"name":"Zhurnal voprosy neirokhirurgii imeni N. N. Burdenko","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Machine learning technologies in CT-based diagnostics and classification of intracranial hemorrhages].\",\"authors\":\"A K Smorchkova, A N Khoruzhaya, E I Kremneva, A V Petryaikin\",\"doi\":\"10.17116/neiro20238702185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This review discusses pooled experience of creation, implementation and effectiveness of machine learning technologies in CT-based diagnosis of intracranial hemorrhages. The authors analyzed 21 original articles between 2015 and 2022 using the following keywords: «intracranial hemorrhage», «machine learning», «deep learning», «artificial intelligence». The review contains general data on basic concepts of machine learning and also considers in more detail such aspects as technical characteristics of data sets used for creation of AI algorithms for certain type of clinical task, their possible impact on effectiveness and clinical experience.</p>\",\"PeriodicalId\":24032,\"journal\":{\"name\":\"Zhurnal voprosy neirokhirurgii imeni N. N. Burdenko\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zhurnal voprosy neirokhirurgii imeni N. N. Burdenko\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17116/neiro20238702185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zhurnal voprosy neirokhirurgii imeni N. N. Burdenko","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17116/neiro20238702185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

本文综述了机器学习技术在基于ct的颅内出血诊断中的创造、实施和有效性的经验。作者分析了2015年至2022年间的21篇原创文章,使用了以下关键词:“颅内出血”、“机器学习”、“深度学习”、“人工智能”。该综述包含关于机器学习基本概念的一般数据,并更详细地考虑了用于为某些类型的临床任务创建人工智能算法的数据集的技术特征,它们对有效性和临床经验的可能影响等方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
[Machine learning technologies in CT-based diagnostics and classification of intracranial hemorrhages].

This review discusses pooled experience of creation, implementation and effectiveness of machine learning technologies in CT-based diagnosis of intracranial hemorrhages. The authors analyzed 21 original articles between 2015 and 2022 using the following keywords: «intracranial hemorrhage», «machine learning», «deep learning», «artificial intelligence». The review contains general data on basic concepts of machine learning and also considers in more detail such aspects as technical characteristics of data sets used for creation of AI algorithms for certain type of clinical task, their possible impact on effectiveness and clinical experience.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
75
期刊介绍: Scientific and practical peer-reviewed journal. This publication covers the theoretical, practical and organizational problems of modern neurosurgery, the latest advances in the treatment of various diseases of the central and peripheral nervous system. Founded in 1937. English version of the journal translates from Russian version since #1/2013.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信