使用主成分分析对自主神经病变进行表型分析

IF 3.2 4区 医学 Q2 NEUROSCIENCES
Steven Lawrence , Bridget R. Mueller , Patrick Kwon , Jessica Robinson-Papp
{"title":"使用主成分分析对自主神经病变进行表型分析","authors":"Steven Lawrence ,&nbsp;Bridget R. Mueller ,&nbsp;Patrick Kwon ,&nbsp;Jessica Robinson-Papp","doi":"10.1016/j.autneu.2022.103056","DOIUrl":null,"url":null,"abstract":"<div><p><span>To identify autonomic neuropathy (AN) phenotypes, we used principal component analysis on data from participants (</span><em>N</em><span> = 209) who underwent standardized autonomic testing including quantitative sudomotor<span> axon reflex testing, and heart rate and blood pressure at rest and during tilt, Valsalva, and standardized deep breathing<span>. The analysis identified seven clusters: 1) normal, 2) hyperadrenergic features without AN, 3) mild AN with hyperadrenergic features, 4) moderate AN, 5) mild AN with hypoadrenergic features, 6) borderline AN with hypoadrenergic features, 7) mild balanced deficits across parasympathetic, sympathetic and sudomotor domains. These findings demonstrate a complex relationship between adrenergic and other aspects of autonomic function.</span></span></span></p></div>","PeriodicalId":55410,"journal":{"name":"Autonomic Neuroscience-Basic & Clinical","volume":"245 ","pages":"Article 103056"},"PeriodicalIF":3.2000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9899306/pdf/","citationCount":"2","resultStr":"{\"title\":\"Phenotyping autonomic neuropathy using principal component analysis\",\"authors\":\"Steven Lawrence ,&nbsp;Bridget R. Mueller ,&nbsp;Patrick Kwon ,&nbsp;Jessica Robinson-Papp\",\"doi\":\"10.1016/j.autneu.2022.103056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>To identify autonomic neuropathy (AN) phenotypes, we used principal component analysis on data from participants (</span><em>N</em><span> = 209) who underwent standardized autonomic testing including quantitative sudomotor<span> axon reflex testing, and heart rate and blood pressure at rest and during tilt, Valsalva, and standardized deep breathing<span>. The analysis identified seven clusters: 1) normal, 2) hyperadrenergic features without AN, 3) mild AN with hyperadrenergic features, 4) moderate AN, 5) mild AN with hypoadrenergic features, 6) borderline AN with hypoadrenergic features, 7) mild balanced deficits across parasympathetic, sympathetic and sudomotor domains. These findings demonstrate a complex relationship between adrenergic and other aspects of autonomic function.</span></span></span></p></div>\",\"PeriodicalId\":55410,\"journal\":{\"name\":\"Autonomic Neuroscience-Basic & Clinical\",\"volume\":\"245 \",\"pages\":\"Article 103056\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9899306/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autonomic Neuroscience-Basic & Clinical\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1566070222001151\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomic Neuroscience-Basic & Clinical","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566070222001151","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 2

摘要

为了确定自主神经病变(AN)表型,我们对参与者(N=209)的数据进行了主成分分析,这些参与者接受了标准化的自主神经测试,包括定量的发汗轴突反射测试、静息时和倾斜时的心率和血压、瓦尔萨尔瓦和标准化深呼吸。分析确定了七个聚类:1)正常,2)无AN的高肾上腺素能特征,3)具有高肾上腺素能特点的轻度AN,4)中度AN,5)具有低肾上腺素能特征的中度AN,6)具有低肾上腺能特征的临界AN,7)副交感神经、交感神经和促汗结构域的轻度平衡缺陷。这些发现表明肾上腺素能和自主神经功能的其他方面之间存在着复杂的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phenotyping autonomic neuropathy using principal component analysis

To identify autonomic neuropathy (AN) phenotypes, we used principal component analysis on data from participants (N = 209) who underwent standardized autonomic testing including quantitative sudomotor axon reflex testing, and heart rate and blood pressure at rest and during tilt, Valsalva, and standardized deep breathing. The analysis identified seven clusters: 1) normal, 2) hyperadrenergic features without AN, 3) mild AN with hyperadrenergic features, 4) moderate AN, 5) mild AN with hypoadrenergic features, 6) borderline AN with hypoadrenergic features, 7) mild balanced deficits across parasympathetic, sympathetic and sudomotor domains. These findings demonstrate a complex relationship between adrenergic and other aspects of autonomic function.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
7.40%
发文量
83
审稿时长
66 days
期刊介绍: This is an international journal with broad coverage of all aspects of the autonomic nervous system in man and animals. The main areas of interest include the innervation of blood vessels and viscera, autonomic ganglia, efferent and afferent autonomic pathways, and autonomic nuclei and pathways in the central nervous system. The Editors will consider papers that deal with any aspect of the autonomic nervous system, including structure, physiology, pharmacology, biochemistry, development, evolution, ageing, behavioural aspects, integrative role and influence on emotional and physical states of the body. Interdisciplinary studies will be encouraged. Studies dealing with human pathology will be also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信