{"title":"大麻素受体参与下降抑制脊髓癫痫样活动在膈输出。","authors":"Shih Tien Lin, Makito Iizuka, Yoshihiro Mikami, Shunya Yoda, Hiroshi Onimaru, Masahiko Izumizaki","doi":"10.2220/biomedres.44.41","DOIUrl":null,"url":null,"abstract":"<p><p>Seizure-like burst activities are induced by blockade of GABAA and/or glycine receptors in various spinal ventral roots of brainstem-spinal cord preparation from neonatal rodents. We found that this is not applicable to the phrenic nerve and that a new inhibitory descending pathway may suppress seizure-like activity in the phrenic nerve. Experiments were performed in brainstem-spinal cord preparation from newborn rats (age: 0-1 day). Left phrenic nerve and right C4 activities were recorded simultaneously. When GABAA and glycine receptors were blocked by 10 μM bicuculline and 10 μM strychnine (Bic+Str), seizure-like burst activities appeared in the fourth cervical ventral root (C4) but not the phrenic nerve. After making a transverse section at C1, the inspiratory burst activity disappeared from both C4 and the phrenic nerve, whereas seizure-like activity appeared in both nerves. We hypothesized that inhibitory descending pathways other than those via GABAA and/or glycine receptors (from the medulla to the spinal cord) work to avoid disturbance of regular respiratory-related diaphragm contraction by seizure-like activity. We found that cannabinoid receptor antagonist, AM251 was effective for the induction of seizure-like activity by Bic+Str in the phrenic nerve in brainstem-spinal cord preparation. Cannabinoid receptors may be involved in this descending inhibitory system.</p>","PeriodicalId":9138,"journal":{"name":"Biomedical Research-tokyo","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cannabinoid receptors involved in descending inhibition on spinal seizure-like activity in the phrenic output.\",\"authors\":\"Shih Tien Lin, Makito Iizuka, Yoshihiro Mikami, Shunya Yoda, Hiroshi Onimaru, Masahiko Izumizaki\",\"doi\":\"10.2220/biomedres.44.41\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Seizure-like burst activities are induced by blockade of GABAA and/or glycine receptors in various spinal ventral roots of brainstem-spinal cord preparation from neonatal rodents. We found that this is not applicable to the phrenic nerve and that a new inhibitory descending pathway may suppress seizure-like activity in the phrenic nerve. Experiments were performed in brainstem-spinal cord preparation from newborn rats (age: 0-1 day). Left phrenic nerve and right C4 activities were recorded simultaneously. When GABAA and glycine receptors were blocked by 10 μM bicuculline and 10 μM strychnine (Bic+Str), seizure-like burst activities appeared in the fourth cervical ventral root (C4) but not the phrenic nerve. After making a transverse section at C1, the inspiratory burst activity disappeared from both C4 and the phrenic nerve, whereas seizure-like activity appeared in both nerves. We hypothesized that inhibitory descending pathways other than those via GABAA and/or glycine receptors (from the medulla to the spinal cord) work to avoid disturbance of regular respiratory-related diaphragm contraction by seizure-like activity. We found that cannabinoid receptor antagonist, AM251 was effective for the induction of seizure-like activity by Bic+Str in the phrenic nerve in brainstem-spinal cord preparation. Cannabinoid receptors may be involved in this descending inhibitory system.</p>\",\"PeriodicalId\":9138,\"journal\":{\"name\":\"Biomedical Research-tokyo\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Research-tokyo\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2220/biomedres.44.41\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Research-tokyo","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2220/biomedres.44.41","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Cannabinoid receptors involved in descending inhibition on spinal seizure-like activity in the phrenic output.
Seizure-like burst activities are induced by blockade of GABAA and/or glycine receptors in various spinal ventral roots of brainstem-spinal cord preparation from neonatal rodents. We found that this is not applicable to the phrenic nerve and that a new inhibitory descending pathway may suppress seizure-like activity in the phrenic nerve. Experiments were performed in brainstem-spinal cord preparation from newborn rats (age: 0-1 day). Left phrenic nerve and right C4 activities were recorded simultaneously. When GABAA and glycine receptors were blocked by 10 μM bicuculline and 10 μM strychnine (Bic+Str), seizure-like burst activities appeared in the fourth cervical ventral root (C4) but not the phrenic nerve. After making a transverse section at C1, the inspiratory burst activity disappeared from both C4 and the phrenic nerve, whereas seizure-like activity appeared in both nerves. We hypothesized that inhibitory descending pathways other than those via GABAA and/or glycine receptors (from the medulla to the spinal cord) work to avoid disturbance of regular respiratory-related diaphragm contraction by seizure-like activity. We found that cannabinoid receptor antagonist, AM251 was effective for the induction of seizure-like activity by Bic+Str in the phrenic nerve in brainstem-spinal cord preparation. Cannabinoid receptors may be involved in this descending inhibitory system.
期刊介绍:
Biomedical Research is peer-reviewed International Research Journal . It was first launched in 1990 as a biannual English Journal and later became triannual. From 2008 it is published in Jan-Apr/ May-Aug/ Sep-Dec..