定量小分子从液相色谱-质谱准确的质量数据集使用CycloBranch。

IF 1.1 4区 化学 Q4 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
Jiří Novák, Kevin A Schug, Vladimír Havlíček
{"title":"定量小分子从液相色谱-质谱准确的质量数据集使用CycloBranch。","authors":"Jiří Novák,&nbsp;Kevin A Schug,&nbsp;Vladimír Havlíček","doi":"10.1177/14690667231164766","DOIUrl":null,"url":null,"abstract":"<p><p>Gaussian and exponentially modified Gaussian functions were incorporated into integrating algorithms used by an open-source, cross-platform tool called CycloBranch. The quantitation is demonstrated on bacterial pyoverdines separated by fine isotope features. Using our algorithm, we can separate the m/z values 694.25802 and 694.26731 (a 0.009 Da difference), where the former belongs to the most intense peak of pyoverdine D (PvdD), and the latter to the second most intense peak of pyoverdine E (PvdE) in the respective isotopic clusters of [M + Fe-H]<sup>2+</sup> ions. The areas under chromatographic curves of standards were analyzed for the limit of detection (LOD), limit of quantitation (LOQ), and regression coefficient calculations. The quantitative module returned a LOD and LOQ of 1.4 and 4.3 ng/mL, respectively, for both PvdD and PvdE in human urine. If present and detected in mass spectra, the intensities of user-defined [M + H]<sup>+</sup>, [M + Na]<sup>+</sup>, [M + K]<sup>+</sup>, [M + Fe-H]<sup>2+</sup>, or other ion types, can be accumulated and used for quantitation. The quantitation result is returned by CycloBranch in seconds or minutes, contrary to an hours-long manual approach, prone to user-born errors originating from necessary copying among various software environments. Native Bruker, Waters, Thermo, txt, mgf, mzML, and mzXML data formats are supported in CycloBranch, which is freely available at https://ms.biomed.cas.cz/cyclobranch.</p>","PeriodicalId":12007,"journal":{"name":"European Journal of Mass Spectrometry","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitation of small molecules from liquid chromatography-mass spectrometric accurate mass datasets using CycloBranch.\",\"authors\":\"Jiří Novák,&nbsp;Kevin A Schug,&nbsp;Vladimír Havlíček\",\"doi\":\"10.1177/14690667231164766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gaussian and exponentially modified Gaussian functions were incorporated into integrating algorithms used by an open-source, cross-platform tool called CycloBranch. The quantitation is demonstrated on bacterial pyoverdines separated by fine isotope features. Using our algorithm, we can separate the m/z values 694.25802 and 694.26731 (a 0.009 Da difference), where the former belongs to the most intense peak of pyoverdine D (PvdD), and the latter to the second most intense peak of pyoverdine E (PvdE) in the respective isotopic clusters of [M + Fe-H]<sup>2+</sup> ions. The areas under chromatographic curves of standards were analyzed for the limit of detection (LOD), limit of quantitation (LOQ), and regression coefficient calculations. The quantitative module returned a LOD and LOQ of 1.4 and 4.3 ng/mL, respectively, for both PvdD and PvdE in human urine. If present and detected in mass spectra, the intensities of user-defined [M + H]<sup>+</sup>, [M + Na]<sup>+</sup>, [M + K]<sup>+</sup>, [M + Fe-H]<sup>2+</sup>, or other ion types, can be accumulated and used for quantitation. The quantitation result is returned by CycloBranch in seconds or minutes, contrary to an hours-long manual approach, prone to user-born errors originating from necessary copying among various software environments. Native Bruker, Waters, Thermo, txt, mgf, mzML, and mzXML data formats are supported in CycloBranch, which is freely available at https://ms.biomed.cas.cz/cyclobranch.</p>\",\"PeriodicalId\":12007,\"journal\":{\"name\":\"European Journal of Mass Spectrometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Mass Spectrometry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1177/14690667231164766\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/14690667231164766","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

高斯函数和指数修正高斯函数被整合到一个名为CycloBranch的开源跨平台工具使用的集成算法中。通过精细的同位素特征对细菌吡啶进行了定量分析。利用该算法可以分离出[m + Fe-H]2+离子各自同位素簇中的m/z值694.25802和694.26731 (a差0.009 Da),其中前者属于pyoverdine D (PvdD)的最强峰,后者属于pyoverdine E (PvdE)的第二强峰。分析标准品色谱曲线下的检出限(LOD)、定量限(LOQ)和回归系数的计算。定量模块对人类尿液中的PvdD和PvdE的LOD和LOQ分别为1.4和4.3 ng/mL。如果在质谱中存在并检测到,则可以积累用户定义的[M + H]+, [M + Na]+, [M + K]+, [M + Fe-H]2+或其他离子类型的强度并用于定量。定量结果由CycloBranch以秒或分钟为单位返回,这与耗时数小时的手动方法相反,容易由于在各种软件环境中进行必要的复制而导致用户产生错误。CycloBranch支持本地的Bruker、Waters、Thermo、txt、mgf、mzML和mzXML数据格式,可以在https://ms.biomed.cas.cz/cyclobranch上免费获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantitation of small molecules from liquid chromatography-mass spectrometric accurate mass datasets using CycloBranch.

Gaussian and exponentially modified Gaussian functions were incorporated into integrating algorithms used by an open-source, cross-platform tool called CycloBranch. The quantitation is demonstrated on bacterial pyoverdines separated by fine isotope features. Using our algorithm, we can separate the m/z values 694.25802 and 694.26731 (a 0.009 Da difference), where the former belongs to the most intense peak of pyoverdine D (PvdD), and the latter to the second most intense peak of pyoverdine E (PvdE) in the respective isotopic clusters of [M + Fe-H]2+ ions. The areas under chromatographic curves of standards were analyzed for the limit of detection (LOD), limit of quantitation (LOQ), and regression coefficient calculations. The quantitative module returned a LOD and LOQ of 1.4 and 4.3 ng/mL, respectively, for both PvdD and PvdE in human urine. If present and detected in mass spectra, the intensities of user-defined [M + H]+, [M + Na]+, [M + K]+, [M + Fe-H]2+, or other ion types, can be accumulated and used for quantitation. The quantitation result is returned by CycloBranch in seconds or minutes, contrary to an hours-long manual approach, prone to user-born errors originating from necessary copying among various software environments. Native Bruker, Waters, Thermo, txt, mgf, mzML, and mzXML data formats are supported in CycloBranch, which is freely available at https://ms.biomed.cas.cz/cyclobranch.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
7.70%
发文量
16
审稿时长
>12 weeks
期刊介绍: JMS - European Journal of Mass Spectrometry, is a peer-reviewed journal, devoted to the publication of innovative research in mass spectrometry. Articles in the journal come from proteomics, metabolomics, petroleomics and other areas developing under the umbrella of the “omic revolution”.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信