{"title":"新鲜尿液上清液中的DNA不受额外离心的影响,并受到脱氧核糖核酸酶的保护","authors":"Ľubica Janovičová , Katarína Kmeťová , Ľubomíra Tóthová , Barbora Vlková , Peter Celec","doi":"10.1016/j.mcp.2023.101900","DOIUrl":null,"url":null,"abstract":"<div><p>Urinary DNA is widely studied as a non-invasive marker for monitoring of kidneys after transplantation or the progression of urinary tract tumors. The quantity of urinary DNA especially of mitochondrial origin has been reported to mirror kidney damage in various renal diseases and their models. Processing of samples might affect urinary DNA concentrations but the details are not clear.</p><p>Samples of urine were collected from fifteen healthy volunteers. DNA was extracted from the whole urine, but also from the supernatant after centrifugation at 1600 <em>g</em> and 16000 g. In addition, we have analyzed the DNA in the microparticles in the pellet after the last spin. DNA was measured using fluorometry and real time PCR targeting nuclear and mitochondrial sequences. Addition of deoxyribonuclease to aliquots of samples enabled the characterization of DNA protection.</p><p>Centrifugation at 1600 <em>g</em> decreased the concentration of extracted DNA by 66% at least in samples with higher DNA in whole urine. Interestingly, the additional spin at 16000 g did not result in a significant decrease in DNA concentration in the supernatant despite detectable microparticle-associated DNA. Deoxyribonuclease decreases total and nuclear DNA by 26% and 31% in whole urine. The majority of urinary mitochondrial DNA seems to be protected against deoxyribonuclease.</p><p>Our results indicate high variability in urinary DNA even in healthy probands. Extracellular urinary DNA is partially bound to cell debris or microparticles, but a considerable part is still in the supernatant and is protected against cleavage. Further research should identify the nature of the protection, especially for mitochondrial DNA. Better understanding of the biology of urinary DNA should help its clinical interpretation.</p></div>","PeriodicalId":49799,"journal":{"name":"Molecular and Cellular Probes","volume":"68 ","pages":"Article 101900"},"PeriodicalIF":2.3000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DNA in fresh urine supernatant is not affected by additional centrifugation and is protected against deoxyribonuclease\",\"authors\":\"Ľubica Janovičová , Katarína Kmeťová , Ľubomíra Tóthová , Barbora Vlková , Peter Celec\",\"doi\":\"10.1016/j.mcp.2023.101900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Urinary DNA is widely studied as a non-invasive marker for monitoring of kidneys after transplantation or the progression of urinary tract tumors. The quantity of urinary DNA especially of mitochondrial origin has been reported to mirror kidney damage in various renal diseases and their models. Processing of samples might affect urinary DNA concentrations but the details are not clear.</p><p>Samples of urine were collected from fifteen healthy volunteers. DNA was extracted from the whole urine, but also from the supernatant after centrifugation at 1600 <em>g</em> and 16000 g. In addition, we have analyzed the DNA in the microparticles in the pellet after the last spin. DNA was measured using fluorometry and real time PCR targeting nuclear and mitochondrial sequences. Addition of deoxyribonuclease to aliquots of samples enabled the characterization of DNA protection.</p><p>Centrifugation at 1600 <em>g</em> decreased the concentration of extracted DNA by 66% at least in samples with higher DNA in whole urine. Interestingly, the additional spin at 16000 g did not result in a significant decrease in DNA concentration in the supernatant despite detectable microparticle-associated DNA. Deoxyribonuclease decreases total and nuclear DNA by 26% and 31% in whole urine. The majority of urinary mitochondrial DNA seems to be protected against deoxyribonuclease.</p><p>Our results indicate high variability in urinary DNA even in healthy probands. Extracellular urinary DNA is partially bound to cell debris or microparticles, but a considerable part is still in the supernatant and is protected against cleavage. Further research should identify the nature of the protection, especially for mitochondrial DNA. Better understanding of the biology of urinary DNA should help its clinical interpretation.</p></div>\",\"PeriodicalId\":49799,\"journal\":{\"name\":\"Molecular and Cellular Probes\",\"volume\":\"68 \",\"pages\":\"Article 101900\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and Cellular Probes\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0890850823000099\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Probes","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890850823000099","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
DNA in fresh urine supernatant is not affected by additional centrifugation and is protected against deoxyribonuclease
Urinary DNA is widely studied as a non-invasive marker for monitoring of kidneys after transplantation or the progression of urinary tract tumors. The quantity of urinary DNA especially of mitochondrial origin has been reported to mirror kidney damage in various renal diseases and their models. Processing of samples might affect urinary DNA concentrations but the details are not clear.
Samples of urine were collected from fifteen healthy volunteers. DNA was extracted from the whole urine, but also from the supernatant after centrifugation at 1600 g and 16000 g. In addition, we have analyzed the DNA in the microparticles in the pellet after the last spin. DNA was measured using fluorometry and real time PCR targeting nuclear and mitochondrial sequences. Addition of deoxyribonuclease to aliquots of samples enabled the characterization of DNA protection.
Centrifugation at 1600 g decreased the concentration of extracted DNA by 66% at least in samples with higher DNA in whole urine. Interestingly, the additional spin at 16000 g did not result in a significant decrease in DNA concentration in the supernatant despite detectable microparticle-associated DNA. Deoxyribonuclease decreases total and nuclear DNA by 26% and 31% in whole urine. The majority of urinary mitochondrial DNA seems to be protected against deoxyribonuclease.
Our results indicate high variability in urinary DNA even in healthy probands. Extracellular urinary DNA is partially bound to cell debris or microparticles, but a considerable part is still in the supernatant and is protected against cleavage. Further research should identify the nature of the protection, especially for mitochondrial DNA. Better understanding of the biology of urinary DNA should help its clinical interpretation.
期刊介绍:
MCP - Advancing biology through–omics and bioinformatic technologies wants to capture outcomes from the current revolution in molecular technologies and sciences. The journal has broadened its scope and embraces any high quality research papers, reviews and opinions in areas including, but not limited to, molecular biology, cell biology, biochemistry, immunology, physiology, epidemiology, ecology, virology, microbiology, parasitology, genetics, evolutionary biology, genomics (including metagenomics), bioinformatics, proteomics, metabolomics, glycomics, and lipidomics. Submissions with a technology-driven focus on understanding normal biological or disease processes as well as conceptual advances and paradigm shifts are particularly encouraged. The Editors welcome fundamental or applied research areas; pre-submission enquiries about advanced draft manuscripts are welcomed. Top quality research and manuscripts will be fast-tracked.