群落生活:多倍体和合胞体在组织生物学中的作用。

IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Nora G Peterson, Donald T Fox
{"title":"群落生活:多倍体和合胞体在组织生物学中的作用。","authors":"Nora G Peterson,&nbsp;Donald T Fox","doi":"10.1007/s10577-021-09664-3","DOIUrl":null,"url":null,"abstract":"<p><p>Multicellular organisms are composed of tissues with diverse cell sizes. Whether a tissue primarily consists of numerous, small cells as opposed to fewer, large cells can impact tissue development and function. The addition of nuclear genome copies within a common cytoplasm is a recurring strategy to manipulate cellular size within a tissue. Cells with more than two genomes can exist transiently, such as in developing germlines or embryos, or can be part of mature somatic tissues. Such nuclear collectives span multiple levels of organization, from mononuclear or binuclear polyploid cells to highly multinucleate structures known as syncytia. Here, we review the diversity of polyploid and syncytial tissues found throughout nature. We summarize current literature concerning tissue construction through syncytia and/or polyploidy and speculate why one or both strategies are advantageous.</p>","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":"29 3-4","pages":"245-260"},"PeriodicalIF":2.4000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10577-021-09664-3","citationCount":"18","resultStr":"{\"title\":\"Communal living: the role of polyploidy and syncytia in tissue biology.\",\"authors\":\"Nora G Peterson,&nbsp;Donald T Fox\",\"doi\":\"10.1007/s10577-021-09664-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multicellular organisms are composed of tissues with diverse cell sizes. Whether a tissue primarily consists of numerous, small cells as opposed to fewer, large cells can impact tissue development and function. The addition of nuclear genome copies within a common cytoplasm is a recurring strategy to manipulate cellular size within a tissue. Cells with more than two genomes can exist transiently, such as in developing germlines or embryos, or can be part of mature somatic tissues. Such nuclear collectives span multiple levels of organization, from mononuclear or binuclear polyploid cells to highly multinucleate structures known as syncytia. Here, we review the diversity of polyploid and syncytial tissues found throughout nature. We summarize current literature concerning tissue construction through syncytia and/or polyploidy and speculate why one or both strategies are advantageous.</p>\",\"PeriodicalId\":50698,\"journal\":{\"name\":\"Chromosome Research\",\"volume\":\"29 3-4\",\"pages\":\"245-260\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s10577-021-09664-3\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chromosome Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10577-021-09664-3\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chromosome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10577-021-09664-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 18

摘要

多细胞生物是由不同细胞大小的组织组成的。一个组织主要是由大量的小细胞还是较少的大细胞组成,都会影响组织的发育和功能。在一个共同的细胞质中加入核基因组拷贝是一种在组织中操纵细胞大小的反复出现的策略。具有两个以上基因组的细胞可以短暂存在,例如在发育中的生殖系或胚胎中,或者可以是成熟体细胞组织的一部分。这种核集体跨越多个层次的组织,从单核或双核多倍体细胞到称为合胞体的高度多核结构。在这里,我们回顾了自然界中发现的多倍体和合胞体组织的多样性。我们总结了目前关于通过合胞体和/或多倍体构建组织的文献,并推测为什么一种或两种策略都是有利的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Communal living: the role of polyploidy and syncytia in tissue biology.

Communal living: the role of polyploidy and syncytia in tissue biology.

Communal living: the role of polyploidy and syncytia in tissue biology.

Multicellular organisms are composed of tissues with diverse cell sizes. Whether a tissue primarily consists of numerous, small cells as opposed to fewer, large cells can impact tissue development and function. The addition of nuclear genome copies within a common cytoplasm is a recurring strategy to manipulate cellular size within a tissue. Cells with more than two genomes can exist transiently, such as in developing germlines or embryos, or can be part of mature somatic tissues. Such nuclear collectives span multiple levels of organization, from mononuclear or binuclear polyploid cells to highly multinucleate structures known as syncytia. Here, we review the diversity of polyploid and syncytial tissues found throughout nature. We summarize current literature concerning tissue construction through syncytia and/or polyploidy and speculate why one or both strategies are advantageous.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chromosome Research
Chromosome Research 生物-生化与分子生物学
CiteScore
4.70
自引率
3.80%
发文量
31
审稿时长
1 months
期刊介绍: Chromosome Research publishes manuscripts from work based on all organisms and encourages submissions in the following areas including, but not limited, to: · Chromosomes and their linkage to diseases; · Chromosome organization within the nucleus; · Chromatin biology (transcription, non-coding RNA, etc); · Chromosome structure, function and mechanics; · Chromosome and DNA repair; · Epigenetic chromosomal functions (centromeres, telomeres, replication, imprinting, dosage compensation, sex determination, chromosome remodeling); · Architectural/epigenomic organization of the genome; · Functional annotation of the genome; · Functional and comparative genomics in plants and animals; · Karyology studies that help resolve difficult taxonomic problems or that provide clues to fundamental mechanisms of genome and karyotype evolution in plants and animals; · Mitosis and Meiosis; · Cancer cytogenomics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信