{"title":"p进顶点算子代数。","authors":"Cameron Franc, Geoffrey Mason","doi":"10.1007/s40993-023-00433-1","DOIUrl":null,"url":null,"abstract":"<p><p>We postulate axioms for a chiral half of a nonarchimedean 2-dimensional bosonic conformal field theory, that is, a vertex operator algebra in which a <i>p</i>-adic Banach space replaces the traditional Hilbert space. We study some consequences of our axioms leading to the construction of various examples, including <i>p</i>-adic commutative Banach rings and <i>p</i>-adic versions of the Virasoro, Heisenberg, and the Moonshine module vertex operator algebras. Serre <i>p</i>-adic modular forms occur naturally in some of these examples as limits of classical 1-point functions.</p>","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10071837/pdf/","citationCount":"2","resultStr":"{\"title\":\"<i>p</i>-adic vertex operator algebras.\",\"authors\":\"Cameron Franc, Geoffrey Mason\",\"doi\":\"10.1007/s40993-023-00433-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We postulate axioms for a chiral half of a nonarchimedean 2-dimensional bosonic conformal field theory, that is, a vertex operator algebra in which a <i>p</i>-adic Banach space replaces the traditional Hilbert space. We study some consequences of our axioms leading to the construction of various examples, including <i>p</i>-adic commutative Banach rings and <i>p</i>-adic versions of the Virasoro, Heisenberg, and the Moonshine module vertex operator algebras. Serre <i>p</i>-adic modular forms occur naturally in some of these examples as limits of classical 1-point functions.</p>\",\"PeriodicalId\":43826,\"journal\":{\"name\":\"Research in Number Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10071837/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40993-023-00433-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40993-023-00433-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
We postulate axioms for a chiral half of a nonarchimedean 2-dimensional bosonic conformal field theory, that is, a vertex operator algebra in which a p-adic Banach space replaces the traditional Hilbert space. We study some consequences of our axioms leading to the construction of various examples, including p-adic commutative Banach rings and p-adic versions of the Virasoro, Heisenberg, and the Moonshine module vertex operator algebras. Serre p-adic modular forms occur naturally in some of these examples as limits of classical 1-point functions.
期刊介绍:
Research in Number Theory is an international, peer-reviewed Hybrid Journal covering the scope of the mathematical disciplines of Number Theory and Arithmetic Geometry. The Mission of the Journal is to publish high-quality original articles that make a significant contribution to these research areas. It will also publish shorter research communications (Letters) covering nascent research in some of the burgeoning areas of number theory research. This journal publishes the highest quality papers in all of the traditional areas of number theory research, and it actively seeks to publish seminal papers in the most emerging and interdisciplinary areas here as well. Research in Number Theory also publishes comprehensive reviews.