Michael J Taylor, Hoshin Kim, William Kew, Amity Andersen, Arunima Bhattacharjee, Mark H Engelhard, Christopher R Anderton
{"title":"二级离子质谱法研究底物对脂质源内碎片影响的原子模拟。","authors":"Michael J Taylor, Hoshin Kim, William Kew, Amity Andersen, Arunima Bhattacharjee, Mark H Engelhard, Christopher R Anderton","doi":"10.1116/6.0002298","DOIUrl":null,"url":null,"abstract":"<p><p>In beam-based ionization methods, the substrate plays an important role on the desorption mechanism of molecules from surfaces. Both the specific orientation that a molecule adopts at a surface and the strength of the molecule-surface interaction can greatly influence desorption processes, which in turn will affect the ion yield and the degree of in-source fragmentation of a molecule. In the beam-based method of secondary ion mass spectrometry (SIMS), in-source fragmentation can be significant and molecule specific due to the hard ionization method of using a primary ion beam for molecule desorption. To investigate the role of the substrate on orientation and in-source fragmentation, we have used atomistic simulations-molecular dynamics in combination with density functional theory calculations-to explore the desorption of a sphingolipid (palmitoylsphingomyelin) from a model surface (gold). We then compare SIMS data from this model system to our modeling findings. Using this approach, we found that the combined adsorption and binding energy of certain bonds associated with the headgroup fragments (C<sub>3</sub>H<sub>8</sub>N<sup>+</sup>, C<sub>5</sub>H<sub>12</sub>N<sup>+</sup>, C<sub>5</sub>H<sub>14</sub>NO<sup>+</sup>, and C<sub>5</sub>H<sub>15</sub>PNO<sub>4</sub> <sup>+</sup>) was a good predictor for fragment intensities (as indicated by relative ion yields). This is the first example where atomistic simulations have been applied in beam-based ionization of lipids, and it presents a new approach to study biointerfacial lipid ordering effects on SIMS imaging.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atomistic simulations for investigation of substrate effects on lipid in-source fragmentation in secondary ion mass spectrometry.\",\"authors\":\"Michael J Taylor, Hoshin Kim, William Kew, Amity Andersen, Arunima Bhattacharjee, Mark H Engelhard, Christopher R Anderton\",\"doi\":\"10.1116/6.0002298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In beam-based ionization methods, the substrate plays an important role on the desorption mechanism of molecules from surfaces. Both the specific orientation that a molecule adopts at a surface and the strength of the molecule-surface interaction can greatly influence desorption processes, which in turn will affect the ion yield and the degree of in-source fragmentation of a molecule. In the beam-based method of secondary ion mass spectrometry (SIMS), in-source fragmentation can be significant and molecule specific due to the hard ionization method of using a primary ion beam for molecule desorption. To investigate the role of the substrate on orientation and in-source fragmentation, we have used atomistic simulations-molecular dynamics in combination with density functional theory calculations-to explore the desorption of a sphingolipid (palmitoylsphingomyelin) from a model surface (gold). We then compare SIMS data from this model system to our modeling findings. Using this approach, we found that the combined adsorption and binding energy of certain bonds associated with the headgroup fragments (C<sub>3</sub>H<sub>8</sub>N<sup>+</sup>, C<sub>5</sub>H<sub>12</sub>N<sup>+</sup>, C<sub>5</sub>H<sub>14</sub>NO<sup>+</sup>, and C<sub>5</sub>H<sub>15</sub>PNO<sub>4</sub> <sup>+</sup>) was a good predictor for fragment intensities (as indicated by relative ion yields). This is the first example where atomistic simulations have been applied in beam-based ionization of lipids, and it presents a new approach to study biointerfacial lipid ordering effects on SIMS imaging.</p>\",\"PeriodicalId\":9053,\"journal\":{\"name\":\"Biointerphases\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biointerphases\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1116/6.0002298\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerphases","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1116/6.0002298","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Atomistic simulations for investigation of substrate effects on lipid in-source fragmentation in secondary ion mass spectrometry.
In beam-based ionization methods, the substrate plays an important role on the desorption mechanism of molecules from surfaces. Both the specific orientation that a molecule adopts at a surface and the strength of the molecule-surface interaction can greatly influence desorption processes, which in turn will affect the ion yield and the degree of in-source fragmentation of a molecule. In the beam-based method of secondary ion mass spectrometry (SIMS), in-source fragmentation can be significant and molecule specific due to the hard ionization method of using a primary ion beam for molecule desorption. To investigate the role of the substrate on orientation and in-source fragmentation, we have used atomistic simulations-molecular dynamics in combination with density functional theory calculations-to explore the desorption of a sphingolipid (palmitoylsphingomyelin) from a model surface (gold). We then compare SIMS data from this model system to our modeling findings. Using this approach, we found that the combined adsorption and binding energy of certain bonds associated with the headgroup fragments (C3H8N+, C5H12N+, C5H14NO+, and C5H15PNO4+) was a good predictor for fragment intensities (as indicated by relative ion yields). This is the first example where atomistic simulations have been applied in beam-based ionization of lipids, and it presents a new approach to study biointerfacial lipid ordering effects on SIMS imaging.
期刊介绍:
Biointerphases emphasizes quantitative characterization of biomaterials and biological interfaces. As an interdisciplinary journal, a strong foundation of chemistry, physics, biology, engineering, theory, and/or modelling is incorporated into originated articles, reviews, and opinionated essays. In addition to regular submissions, the journal regularly features In Focus sections, targeted on specific topics and edited by experts in the field. Biointerphases is an international journal with excellence in scientific peer-review. Biointerphases is indexed in PubMed and the Science Citation Index (Clarivate Analytics). Accepted papers appear online immediately after proof processing and are uploaded to key citation sources daily. The journal is based on a mixed subscription and open-access model: Typically, authors can publish without any page charges but if the authors wish to publish open access, they can do so for a modest fee.
Topics include:
bio-surface modification
nano-bio interface
protein-surface interactions
cell-surface interactions
in vivo and in vitro systems
biofilms / biofouling
biosensors / biodiagnostics
bio on a chip
coatings
interface spectroscopy
biotribology / biorheology
molecular recognition
ambient diagnostic methods
interface modelling
adhesion phenomena.