Donghyun Paul Jeong, Eva Hall, Erin Neu, Donny Hanjaya-Putra
{"title":"足磷脂负责不同的血液和淋巴毛细血管。","authors":"Donghyun Paul Jeong, Eva Hall, Erin Neu, Donny Hanjaya-Putra","doi":"10.1007/s12195-022-00730-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Controlling the formation of blood and lymphatic vasculatures is crucial for engineered tissues. Although the lymphatic vessels originate from embryonic blood vessels, the two retain functional and physiological differences even as they develop in the vicinity of each other. This suggests that there is a previously unknown molecular mechanism by which blood (BECs) and lymphatic endothelial cells (LECs) recognize each other and coordinate to generate distinct capillary networks.</p><p><strong>Methods: </strong>We utilized Matrigel and fibrin assays to determine how cord-like structures (CLS) can be controlled by altering LEC and BEC identity through podoplanin (<i>PDPN</i>) and folliculin (<i>FLCN</i>) expressions. We generated BEC <sup><i>ΔFLCN</i></sup> and LEC <sup><i>ΔPDPN</i></sup> , and observed cell migration to characterize loss lymphatic and blood characteristics due to respective knockouts.</p><p><strong>Results: </strong>We observed that LECs and BECs form distinct CLS in Matrigel and fibrin gels despite being cultured in close proximity with each other. We confirmed that the LECs and BECs do not recognize each other through paracrine signaling, as proliferation and migration of both cells were unaffected by paracrine signals. On the other hand, we found <i>PDPN</i> to be the key surface protein that is responsible for LEC-BEC recognition, and LECs lacking <i>PDPN</i> became pseudo-BECs and vice versa. We also found that <i>FLCN</i> maintains BEC identity through downregulation of <i>PDPN</i>.</p><p><strong>Conclusions: </strong>Overall, these observations reveal a new molecular pathway through which LECs and BECs form distinct CLS through physical contact by <i>PDPN</i> which in turn is regulated by <i>FLCN</i>, which has important implications toward designing functional engineered tissues.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12195-022-00730-2.</p>","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":"15 5","pages":"467-478"},"PeriodicalIF":2.3000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9700554/pdf/","citationCount":"3","resultStr":"{\"title\":\"Podoplanin is Responsible for the Distinct Blood and Lymphatic Capillaries.\",\"authors\":\"Donghyun Paul Jeong, Eva Hall, Erin Neu, Donny Hanjaya-Putra\",\"doi\":\"10.1007/s12195-022-00730-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Controlling the formation of blood and lymphatic vasculatures is crucial for engineered tissues. Although the lymphatic vessels originate from embryonic blood vessels, the two retain functional and physiological differences even as they develop in the vicinity of each other. This suggests that there is a previously unknown molecular mechanism by which blood (BECs) and lymphatic endothelial cells (LECs) recognize each other and coordinate to generate distinct capillary networks.</p><p><strong>Methods: </strong>We utilized Matrigel and fibrin assays to determine how cord-like structures (CLS) can be controlled by altering LEC and BEC identity through podoplanin (<i>PDPN</i>) and folliculin (<i>FLCN</i>) expressions. We generated BEC <sup><i>ΔFLCN</i></sup> and LEC <sup><i>ΔPDPN</i></sup> , and observed cell migration to characterize loss lymphatic and blood characteristics due to respective knockouts.</p><p><strong>Results: </strong>We observed that LECs and BECs form distinct CLS in Matrigel and fibrin gels despite being cultured in close proximity with each other. We confirmed that the LECs and BECs do not recognize each other through paracrine signaling, as proliferation and migration of both cells were unaffected by paracrine signals. On the other hand, we found <i>PDPN</i> to be the key surface protein that is responsible for LEC-BEC recognition, and LECs lacking <i>PDPN</i> became pseudo-BECs and vice versa. We also found that <i>FLCN</i> maintains BEC identity through downregulation of <i>PDPN</i>.</p><p><strong>Conclusions: </strong>Overall, these observations reveal a new molecular pathway through which LECs and BECs form distinct CLS through physical contact by <i>PDPN</i> which in turn is regulated by <i>FLCN</i>, which has important implications toward designing functional engineered tissues.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12195-022-00730-2.</p>\",\"PeriodicalId\":9687,\"journal\":{\"name\":\"Cellular and molecular bioengineering\",\"volume\":\"15 5\",\"pages\":\"467-478\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9700554/pdf/\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular and molecular bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12195-022-00730-2\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and molecular bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12195-022-00730-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Podoplanin is Responsible for the Distinct Blood and Lymphatic Capillaries.
Introduction: Controlling the formation of blood and lymphatic vasculatures is crucial for engineered tissues. Although the lymphatic vessels originate from embryonic blood vessels, the two retain functional and physiological differences even as they develop in the vicinity of each other. This suggests that there is a previously unknown molecular mechanism by which blood (BECs) and lymphatic endothelial cells (LECs) recognize each other and coordinate to generate distinct capillary networks.
Methods: We utilized Matrigel and fibrin assays to determine how cord-like structures (CLS) can be controlled by altering LEC and BEC identity through podoplanin (PDPN) and folliculin (FLCN) expressions. We generated BEC ΔFLCN and LEC ΔPDPN , and observed cell migration to characterize loss lymphatic and blood characteristics due to respective knockouts.
Results: We observed that LECs and BECs form distinct CLS in Matrigel and fibrin gels despite being cultured in close proximity with each other. We confirmed that the LECs and BECs do not recognize each other through paracrine signaling, as proliferation and migration of both cells were unaffected by paracrine signals. On the other hand, we found PDPN to be the key surface protein that is responsible for LEC-BEC recognition, and LECs lacking PDPN became pseudo-BECs and vice versa. We also found that FLCN maintains BEC identity through downregulation of PDPN.
Conclusions: Overall, these observations reveal a new molecular pathway through which LECs and BECs form distinct CLS through physical contact by PDPN which in turn is regulated by FLCN, which has important implications toward designing functional engineered tissues.
Supplementary information: The online version contains supplementary material available at 10.1007/s12195-022-00730-2.
期刊介绍:
The field of cellular and molecular bioengineering seeks to understand, so that we may ultimately control, the mechanical, chemical, and electrical processes of the cell. A key challenge in improving human health is to understand how cellular behavior arises from molecular-level interactions. CMBE, an official journal of the Biomedical Engineering Society, publishes original research and review papers in the following seven general areas:
Molecular: DNA-protein/RNA-protein interactions, protein folding and function, protein-protein and receptor-ligand interactions, lipids, polysaccharides, molecular motors, and the biophysics of macromolecules that function as therapeutics or engineered matrices, for example.
Cellular: Studies of how cells sense physicochemical events surrounding and within cells, and how cells transduce these events into biological responses. Specific cell processes of interest include cell growth, differentiation, migration, signal transduction, protein secretion and transport, gene expression and regulation, and cell-matrix interactions.
Mechanobiology: The mechanical properties of cells and biomolecules, cellular/molecular force generation and adhesion, the response of cells to their mechanical microenvironment, and mechanotransduction in response to various physical forces such as fluid shear stress.
Nanomedicine: The engineering of nanoparticles for advanced drug delivery and molecular imaging applications, with particular focus on the interaction of such particles with living cells. Also, the application of nanostructured materials to control the behavior of cells and biomolecules.