{"title":"RhoC沉默诱导巨噬细胞M1极化,通过调控PTEN/FOXO1通路抑制结肠癌的迁移和侵袭","authors":"Bin Yang, Lihua Wang, Zhiying Tian","doi":"10.1111/iep.12460","DOIUrl":null,"url":null,"abstract":"<p>Ras homologue family member C (RhoC) is an oncogene in diverse types of human cancers, whereas its regulatory mechanisms involving macrophage polarization is rarely investigated. This study is designed to explore the regulatory role of RhoC in colon cancer and the underlying molecular mechanisms involving macrophage polarization. We detected RhoC expression by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot, and analysed the biological function of RhoC knockdown in CC cells by the MTT, wound healing and transwell assay. Macrophage polarization-associated markers, genes associated with migration, phosphatase and tensin homologue (PTEN) and forkhead box O (FOXO) were determined by qRT-PCR and western blot. The xenograft tumour mouse model was used to assess the role of RhoC in vivo. RhoC is highly expressed in CC cells. The cell viability, invasion and migration abilities of CC cells were reduced by knockdown of RhoC. RhoC knockdown promoted M1 polarization, inhibited M2 polarization and decreased levels of genes associated with migration (matrix metalloproteinase-2 and matrix metalloproteinase-9). Silencing of RhoC inhibited tumour growth and expression of genes associated with migration in the xenografted model. In addition, silencing of RhoC promoted PTEN/FOXO1 expression, and PTEN inhibitor (SF1670) reversed the inhibitory effects of RhoC silencing. We demonstrated that silencing of RhoC reduced CC cells invasion and migration, and tumour growth by suppressing M2 macrophage polarization via regulating the PTEN/FOXO1 pathway.</p>","PeriodicalId":14157,"journal":{"name":"International Journal of Experimental Pathology","volume":"104 1","pages":"33-42"},"PeriodicalIF":1.8000,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/iep.12460","citationCount":"1","resultStr":"{\"title\":\"Silencing of RhoC induces macrophage M1 polarization to inhibit migration and invasion in colon cancer via regulating the PTEN/FOXO1 pathway\",\"authors\":\"Bin Yang, Lihua Wang, Zhiying Tian\",\"doi\":\"10.1111/iep.12460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ras homologue family member C (RhoC) is an oncogene in diverse types of human cancers, whereas its regulatory mechanisms involving macrophage polarization is rarely investigated. This study is designed to explore the regulatory role of RhoC in colon cancer and the underlying molecular mechanisms involving macrophage polarization. We detected RhoC expression by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot, and analysed the biological function of RhoC knockdown in CC cells by the MTT, wound healing and transwell assay. Macrophage polarization-associated markers, genes associated with migration, phosphatase and tensin homologue (PTEN) and forkhead box O (FOXO) were determined by qRT-PCR and western blot. The xenograft tumour mouse model was used to assess the role of RhoC in vivo. RhoC is highly expressed in CC cells. The cell viability, invasion and migration abilities of CC cells were reduced by knockdown of RhoC. RhoC knockdown promoted M1 polarization, inhibited M2 polarization and decreased levels of genes associated with migration (matrix metalloproteinase-2 and matrix metalloproteinase-9). Silencing of RhoC inhibited tumour growth and expression of genes associated with migration in the xenografted model. In addition, silencing of RhoC promoted PTEN/FOXO1 expression, and PTEN inhibitor (SF1670) reversed the inhibitory effects of RhoC silencing. We demonstrated that silencing of RhoC reduced CC cells invasion and migration, and tumour growth by suppressing M2 macrophage polarization via regulating the PTEN/FOXO1 pathway.</p>\",\"PeriodicalId\":14157,\"journal\":{\"name\":\"International Journal of Experimental Pathology\",\"volume\":\"104 1\",\"pages\":\"33-42\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/iep.12460\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Experimental Pathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/iep.12460\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Experimental Pathology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/iep.12460","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PATHOLOGY","Score":null,"Total":0}
Silencing of RhoC induces macrophage M1 polarization to inhibit migration and invasion in colon cancer via regulating the PTEN/FOXO1 pathway
Ras homologue family member C (RhoC) is an oncogene in diverse types of human cancers, whereas its regulatory mechanisms involving macrophage polarization is rarely investigated. This study is designed to explore the regulatory role of RhoC in colon cancer and the underlying molecular mechanisms involving macrophage polarization. We detected RhoC expression by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot, and analysed the biological function of RhoC knockdown in CC cells by the MTT, wound healing and transwell assay. Macrophage polarization-associated markers, genes associated with migration, phosphatase and tensin homologue (PTEN) and forkhead box O (FOXO) were determined by qRT-PCR and western blot. The xenograft tumour mouse model was used to assess the role of RhoC in vivo. RhoC is highly expressed in CC cells. The cell viability, invasion and migration abilities of CC cells were reduced by knockdown of RhoC. RhoC knockdown promoted M1 polarization, inhibited M2 polarization and decreased levels of genes associated with migration (matrix metalloproteinase-2 and matrix metalloproteinase-9). Silencing of RhoC inhibited tumour growth and expression of genes associated with migration in the xenografted model. In addition, silencing of RhoC promoted PTEN/FOXO1 expression, and PTEN inhibitor (SF1670) reversed the inhibitory effects of RhoC silencing. We demonstrated that silencing of RhoC reduced CC cells invasion and migration, and tumour growth by suppressing M2 macrophage polarization via regulating the PTEN/FOXO1 pathway.
期刊介绍:
Experimental Pathology encompasses the use of multidisciplinary scientific techniques to investigate the pathogenesis and progression of pathologic processes. The International Journal of Experimental Pathology - IJEP - publishes papers which afford new and imaginative insights into the basic mechanisms underlying human disease, including in vitro work, animal models, and clinical research.
Aiming to report on work that addresses the common theme of mechanism at a cellular and molecular level, IJEP publishes both original experimental investigations and review articles. Recent themes for review series have covered topics as diverse as "Viruses and Cancer", "Granulomatous Diseases", "Stem cells" and "Cardiovascular Pathology".