Klara Uher, Stefanie Ehrbar, Stephanie Tanadini-Lang, Riccardo Dal Bello
{"title":"通过使用开源 TPS 脚本的 VMAT 计划复杂性指标,减少针对患者的质量保证。","authors":"Klara Uher, Stefanie Ehrbar, Stephanie Tanadini-Lang, Riccardo Dal Bello","doi":"10.1016/j.zemedi.2023.02.003","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Volumetric modulated arc therapy (VMAT) is a widespread technique for the delivery of normo-fractionated radiation therapy (NFRT) and stereotactic body radiation therapy (SBRT). It is associated with a significant hardware burden requiring dose rate modulation, collimator movement and gantry rotation synchronisation. Patient specific quality assurance (PSQA) guarantees that the linacs can precisely and accurately deliver the planned dose. However, PSQA requires a significant time allocation and class solutions to reduce this while guaranteeing the deliverability of the plans should be investigated.</p><p><strong>Methods: </strong>In this study, an in-house developed Eclipse Scripting API (ESAPI) script was used to extract five independent plan complexity metrics from N = 667 VMAT treatment fields. The correlation between metrics and portal dosimetry measurements was investigated with Pearson correlation, box plot analysis and receiver operating characteristic curves, which were used to defined the best performing metric and its threshold.</p><p><strong>Results: </strong>The incidence of fields failing the clinical PSQA criteria of 3%/2mm (NFRT) and 3%/1.5mm (SBRT) was low (N = 1). The mean MLC opening was the metric with the highest correlation with the portal dosimetry data and among the best in discriminating the requirement of PSQA. The thresholds of 16.12 mm (NFRT) and 7.96 mm (SBRT) corresponded to true positive rates higher than 90%.</p><p><strong>Conclusions: </strong>This work presents a quantitative approach to reduce the time allocation for PSQA by identifying the most complex plans demanding a dedicated measurement. The proposed method requires PSQA for approximately 10% of the plans. The ESAPI script is distributed open-source to ease the investigation and implementation at other institutions.</p>","PeriodicalId":54397,"journal":{"name":"Zeitschrift fur Medizinische Physik","volume":" ","pages":"555-564"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reduction of patient specific quality assurance through plan complexity metrics for VMAT plans with an open-source TPS script.\",\"authors\":\"Klara Uher, Stefanie Ehrbar, Stephanie Tanadini-Lang, Riccardo Dal Bello\",\"doi\":\"10.1016/j.zemedi.2023.02.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Volumetric modulated arc therapy (VMAT) is a widespread technique for the delivery of normo-fractionated radiation therapy (NFRT) and stereotactic body radiation therapy (SBRT). It is associated with a significant hardware burden requiring dose rate modulation, collimator movement and gantry rotation synchronisation. Patient specific quality assurance (PSQA) guarantees that the linacs can precisely and accurately deliver the planned dose. However, PSQA requires a significant time allocation and class solutions to reduce this while guaranteeing the deliverability of the plans should be investigated.</p><p><strong>Methods: </strong>In this study, an in-house developed Eclipse Scripting API (ESAPI) script was used to extract five independent plan complexity metrics from N = 667 VMAT treatment fields. The correlation between metrics and portal dosimetry measurements was investigated with Pearson correlation, box plot analysis and receiver operating characteristic curves, which were used to defined the best performing metric and its threshold.</p><p><strong>Results: </strong>The incidence of fields failing the clinical PSQA criteria of 3%/2mm (NFRT) and 3%/1.5mm (SBRT) was low (N = 1). The mean MLC opening was the metric with the highest correlation with the portal dosimetry data and among the best in discriminating the requirement of PSQA. The thresholds of 16.12 mm (NFRT) and 7.96 mm (SBRT) corresponded to true positive rates higher than 90%.</p><p><strong>Conclusions: </strong>This work presents a quantitative approach to reduce the time allocation for PSQA by identifying the most complex plans demanding a dedicated measurement. The proposed method requires PSQA for approximately 10% of the plans. The ESAPI script is distributed open-source to ease the investigation and implementation at other institutions.</p>\",\"PeriodicalId\":54397,\"journal\":{\"name\":\"Zeitschrift fur Medizinische Physik\",\"volume\":\" \",\"pages\":\"555-564\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift fur Medizinische Physik\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.zemedi.2023.02.003\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/3/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift fur Medizinische Physik","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.zemedi.2023.02.003","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Reduction of patient specific quality assurance through plan complexity metrics for VMAT plans with an open-source TPS script.
Purpose: Volumetric modulated arc therapy (VMAT) is a widespread technique for the delivery of normo-fractionated radiation therapy (NFRT) and stereotactic body radiation therapy (SBRT). It is associated with a significant hardware burden requiring dose rate modulation, collimator movement and gantry rotation synchronisation. Patient specific quality assurance (PSQA) guarantees that the linacs can precisely and accurately deliver the planned dose. However, PSQA requires a significant time allocation and class solutions to reduce this while guaranteeing the deliverability of the plans should be investigated.
Methods: In this study, an in-house developed Eclipse Scripting API (ESAPI) script was used to extract five independent plan complexity metrics from N = 667 VMAT treatment fields. The correlation between metrics and portal dosimetry measurements was investigated with Pearson correlation, box plot analysis and receiver operating characteristic curves, which were used to defined the best performing metric and its threshold.
Results: The incidence of fields failing the clinical PSQA criteria of 3%/2mm (NFRT) and 3%/1.5mm (SBRT) was low (N = 1). The mean MLC opening was the metric with the highest correlation with the portal dosimetry data and among the best in discriminating the requirement of PSQA. The thresholds of 16.12 mm (NFRT) and 7.96 mm (SBRT) corresponded to true positive rates higher than 90%.
Conclusions: This work presents a quantitative approach to reduce the time allocation for PSQA by identifying the most complex plans demanding a dedicated measurement. The proposed method requires PSQA for approximately 10% of the plans. The ESAPI script is distributed open-source to ease the investigation and implementation at other institutions.
期刊介绍:
Zeitschrift fur Medizinische Physik (Journal of Medical Physics) is an official organ of the German and Austrian Society of Medical Physic and the Swiss Society of Radiobiology and Medical Physics.The Journal is a platform for basic research and practical applications of physical procedures in medical diagnostics and therapy. The articles are reviewed following international standards of peer reviewing.
Focuses of the articles are:
-Biophysical methods in radiation therapy and nuclear medicine
-Dosimetry and radiation protection
-Radiological diagnostics and quality assurance
-Modern imaging techniques, such as computed tomography, magnetic resonance imaging, positron emission tomography
-Ultrasonography diagnostics, application of laser and UV rays
-Electronic processing of biosignals
-Artificial intelligence and machine learning in medical physics
In the Journal, the latest scientific insights find their expression in the form of original articles, reviews, technical communications, and information for the clinical practice.