Norman R Harris, Wendy Leskova, Gaganpreet Kaur, Randa S Eshaq, Patsy R Carter
{"title":"糖尿病视网膜的血流分布和内皮表面层。","authors":"Norman R Harris, Wendy Leskova, Gaganpreet Kaur, Randa S Eshaq, Patsy R Carter","doi":"10.3233/BIR-180200","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic retinopathy is known as a microvascular complication of hyperglycemia, with a breakdown of the blood-retinal barrier, loss of pericytes, formation of microhemorrhages, early decreases in perfusion and areas of ischemia, with the latter speculated to induce the eventual proliferative, angiogenic phase of the disease. Our animal models of diabetic retinopathy demonstrate similar decreases in retinal blood flow as seen in the early stages of diabetes in humans. Our studies also show an alteration in the retinal distribution of red blood cells, with the deep capillary layer receiving a reduced fraction, and with flow being diverted more towards the superficial vascular layer. Normal red blood cell distribution is dependent on the presence of the endothelial surface layer, specifically the glycocalyx, which has been reported to be partially lost in the diabetic retina of both humans and animals. This review addresses these two phenomena in diabetes: altered perfusion patterns and loss of the glycocalyx, with a possible connection between the two.</p>","PeriodicalId":9167,"journal":{"name":"Biorheology","volume":"56 2-3","pages":"181-189"},"PeriodicalIF":1.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/BIR-180200","citationCount":"7","resultStr":"{\"title\":\"Blood flow distribution and the endothelial surface layer in the diabetic retina.\",\"authors\":\"Norman R Harris, Wendy Leskova, Gaganpreet Kaur, Randa S Eshaq, Patsy R Carter\",\"doi\":\"10.3233/BIR-180200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diabetic retinopathy is known as a microvascular complication of hyperglycemia, with a breakdown of the blood-retinal barrier, loss of pericytes, formation of microhemorrhages, early decreases in perfusion and areas of ischemia, with the latter speculated to induce the eventual proliferative, angiogenic phase of the disease. Our animal models of diabetic retinopathy demonstrate similar decreases in retinal blood flow as seen in the early stages of diabetes in humans. Our studies also show an alteration in the retinal distribution of red blood cells, with the deep capillary layer receiving a reduced fraction, and with flow being diverted more towards the superficial vascular layer. Normal red blood cell distribution is dependent on the presence of the endothelial surface layer, specifically the glycocalyx, which has been reported to be partially lost in the diabetic retina of both humans and animals. This review addresses these two phenomena in diabetes: altered perfusion patterns and loss of the glycocalyx, with a possible connection between the two.</p>\",\"PeriodicalId\":9167,\"journal\":{\"name\":\"Biorheology\",\"volume\":\"56 2-3\",\"pages\":\"181-189\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3233/BIR-180200\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biorheology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3233/BIR-180200\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biorheology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/BIR-180200","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Blood flow distribution and the endothelial surface layer in the diabetic retina.
Diabetic retinopathy is known as a microvascular complication of hyperglycemia, with a breakdown of the blood-retinal barrier, loss of pericytes, formation of microhemorrhages, early decreases in perfusion and areas of ischemia, with the latter speculated to induce the eventual proliferative, angiogenic phase of the disease. Our animal models of diabetic retinopathy demonstrate similar decreases in retinal blood flow as seen in the early stages of diabetes in humans. Our studies also show an alteration in the retinal distribution of red blood cells, with the deep capillary layer receiving a reduced fraction, and with flow being diverted more towards the superficial vascular layer. Normal red blood cell distribution is dependent on the presence of the endothelial surface layer, specifically the glycocalyx, which has been reported to be partially lost in the diabetic retina of both humans and animals. This review addresses these two phenomena in diabetes: altered perfusion patterns and loss of the glycocalyx, with a possible connection between the two.
期刊介绍:
Biorheology is an international interdisciplinary journal that publishes research on the deformation and flow properties of biological systems or materials. It is the aim of the editors and publishers of Biorheology to bring together contributions from those working in various fields of biorheological research from all over the world. A diverse editorial board with broad international representation provides guidance and expertise in wide-ranging applications of rheological methods to biological systems and materials.
The scope of papers solicited by Biorheology extends to systems at different levels of organization that have never been studied before, or, if studied previously, have either never been analyzed in terms of their rheological properties or have not been studied from the point of view of the rheological matching between their structural and functional properties. This biorheological approach applies in particular to molecular studies where changes of physical properties and conformation are investigated without reference to how the process actually takes place, how the forces generated are matched to the properties of the structures and environment concerned, proper time scales, or what structures or strength of structures are required.