{"title":"LayerNet:一种用于夜间语义分割的一步分层网络。","authors":"Hao Li, Changjiang Liu, Yang Yang","doi":"10.1109/MCG.2023.3253167","DOIUrl":null,"url":null,"abstract":"<p><p>We have collected a novel, nighttime scene dataset, called Rebecca, including 600 real images captured at night with pixel-level semantic annotations, which is currently scarce and can be invoked as a new benchmark. In addition, we proposed a one-step layered network, named LayerNet, to combine local features rich in appearance information in the shallow layer, global features abundant in semantic information in the deep layer, and middle-level features in between by explicitly modeling multistage features of objects in the nighttime. In addition, a multihead decoder and a well-designed hierarchical module are utilized to extract and fuse features of different depths. Numerous experiments show that our dataset can significantly improve the segmentation ability of the existing models for nighttime images. Meanwhile, our LayerNet achieves the state-of-the-art accuracy on Rebecca (65.3% mIOU). The dataset is available at https://github.com/Lihao482/REebecca.</p>","PeriodicalId":55026,"journal":{"name":"IEEE Computer Graphics and Applications","volume":"PP ","pages":"9-21"},"PeriodicalIF":1.7000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"LayerNet: A One-Step Layered Network for Semantic Segmentation at Night.\",\"authors\":\"Hao Li, Changjiang Liu, Yang Yang\",\"doi\":\"10.1109/MCG.2023.3253167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We have collected a novel, nighttime scene dataset, called Rebecca, including 600 real images captured at night with pixel-level semantic annotations, which is currently scarce and can be invoked as a new benchmark. In addition, we proposed a one-step layered network, named LayerNet, to combine local features rich in appearance information in the shallow layer, global features abundant in semantic information in the deep layer, and middle-level features in between by explicitly modeling multistage features of objects in the nighttime. In addition, a multihead decoder and a well-designed hierarchical module are utilized to extract and fuse features of different depths. Numerous experiments show that our dataset can significantly improve the segmentation ability of the existing models for nighttime images. Meanwhile, our LayerNet achieves the state-of-the-art accuracy on Rebecca (65.3% mIOU). The dataset is available at https://github.com/Lihao482/REebecca.</p>\",\"PeriodicalId\":55026,\"journal\":{\"name\":\"IEEE Computer Graphics and Applications\",\"volume\":\"PP \",\"pages\":\"9-21\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Computer Graphics and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/MCG.2023.3253167\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Graphics and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/MCG.2023.3253167","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
LayerNet: A One-Step Layered Network for Semantic Segmentation at Night.
We have collected a novel, nighttime scene dataset, called Rebecca, including 600 real images captured at night with pixel-level semantic annotations, which is currently scarce and can be invoked as a new benchmark. In addition, we proposed a one-step layered network, named LayerNet, to combine local features rich in appearance information in the shallow layer, global features abundant in semantic information in the deep layer, and middle-level features in between by explicitly modeling multistage features of objects in the nighttime. In addition, a multihead decoder and a well-designed hierarchical module are utilized to extract and fuse features of different depths. Numerous experiments show that our dataset can significantly improve the segmentation ability of the existing models for nighttime images. Meanwhile, our LayerNet achieves the state-of-the-art accuracy on Rebecca (65.3% mIOU). The dataset is available at https://github.com/Lihao482/REebecca.
期刊介绍:
IEEE Computer Graphics and Applications (CG&A) bridges the theory and practice of computer graphics, visualization, virtual and augmented reality, and HCI. From specific algorithms to full system implementations, CG&A offers a unique combination of peer-reviewed feature articles and informal departments. Theme issues guest edited by leading researchers in their fields track the latest developments and trends in computer-generated graphical content, while tutorials and surveys provide a broad overview of interesting and timely topics. Regular departments further explore the core areas of graphics as well as extend into topics such as usability, education, history, and opinion. Each issue, the story of our cover focuses on creative applications of the technology by an artist or designer. Published six times a year, CG&A is indispensable reading for people working at the leading edge of computer-generated graphics technology and its applications in everything from business to the arts.