通过靶向热带玉米未成熟胚胎对 ZmPLA1 基因进行无 DNA 基因组编辑。

IF 4.5 2区 农林科学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Sagar Krushnaji Rangari, Manjot Kaur Sudha, Harjot Kaur, Nidhi Uppal, Gagandeep Singh, Yogesh Vikal, Priti Sharma
{"title":"通过靶向热带玉米未成熟胚胎对 ZmPLA1 基因进行无 DNA 基因组编辑。","authors":"Sagar Krushnaji Rangari, Manjot Kaur Sudha, Harjot Kaur, Nidhi Uppal, Gagandeep Singh, Yogesh Vikal, Priti Sharma","doi":"10.1080/21645698.2023.2197303","DOIUrl":null,"url":null,"abstract":"<p><p>Doubled haploid (DH) production accelerates the development of homozygous lines in a single generation. In maize, haploids are widely produced by the use of haploid inducer Stock 6, earlier reported in 1959. Three independent studies reported haploid induction in maize which is triggered due to a 4 bp frame-shift mutation in <i>matrilineal</i> (<i>ZmPLA1</i>) gene. The present study was focused on the generation of mutants for <i>ZmPLA1</i> gene in maize inbred line LM13 through site-directed mutagenesis via CRISPR/Cas9-mediated ribonucleoprotein (RNP) complex method to increase the haploid induction rate. Three single guide RNAs (sgRNAs) for the <i>ZmPLA1</i> gene locus were used for transforming the 14 days old immature embryos via bombardment. 373 regenerated plants were subjected to mutation detection followed by Sanger's sequencing. Out of three putative mutants identified, one mutant depicted one base pair substitution and one base pair deletion at the target site.</p>","PeriodicalId":54282,"journal":{"name":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","volume":" ","pages":"1-7"},"PeriodicalIF":4.5000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10761150/pdf/","citationCount":"1","resultStr":"{\"title\":\"DNA-free genome editing for <i>ZmPLA1</i> gene via targeting immature embryos in tropical maize.\",\"authors\":\"Sagar Krushnaji Rangari, Manjot Kaur Sudha, Harjot Kaur, Nidhi Uppal, Gagandeep Singh, Yogesh Vikal, Priti Sharma\",\"doi\":\"10.1080/21645698.2023.2197303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Doubled haploid (DH) production accelerates the development of homozygous lines in a single generation. In maize, haploids are widely produced by the use of haploid inducer Stock 6, earlier reported in 1959. Three independent studies reported haploid induction in maize which is triggered due to a 4 bp frame-shift mutation in <i>matrilineal</i> (<i>ZmPLA1</i>) gene. The present study was focused on the generation of mutants for <i>ZmPLA1</i> gene in maize inbred line LM13 through site-directed mutagenesis via CRISPR/Cas9-mediated ribonucleoprotein (RNP) complex method to increase the haploid induction rate. Three single guide RNAs (sgRNAs) for the <i>ZmPLA1</i> gene locus were used for transforming the 14 days old immature embryos via bombardment. 373 regenerated plants were subjected to mutation detection followed by Sanger's sequencing. Out of three putative mutants identified, one mutant depicted one base pair substitution and one base pair deletion at the target site.</p>\",\"PeriodicalId\":54282,\"journal\":{\"name\":\"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain\",\"volume\":\" \",\"pages\":\"1-7\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10761150/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/21645698.2023.2197303\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/4/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21645698.2023.2197303","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

双单倍体(DH)生产可加速同源品系在单代中的发展。在玉米中,单倍体是通过使用单倍体诱导剂 Stock 6(早在 1959 年就有报道)广泛产生的。三项独立的研究报告称,玉米单倍体诱导是由母系(ZmPLA1)基因中一个 4 bp 的移帧突变引发的。本研究主要通过 CRISPR/Cas9 介导的核糖核蛋白(RNP)复合方法进行定点诱变,在玉米近交系 LM13 中产生 ZmPLA1 基因突变株,以提高单倍体诱导率。针对 ZmPLA1 基因位点使用了三种单导 RNA(sgRNA),通过轰击转化 14 天大的未成熟胚。对 373 株再生植株进行了突变检测和桑格测序。在确定的三个假定突变体中,一个突变体在目标位点上有一个碱基对替换和一个碱基对缺失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DNA-free genome editing for ZmPLA1 gene via targeting immature embryos in tropical maize.

Doubled haploid (DH) production accelerates the development of homozygous lines in a single generation. In maize, haploids are widely produced by the use of haploid inducer Stock 6, earlier reported in 1959. Three independent studies reported haploid induction in maize which is triggered due to a 4 bp frame-shift mutation in matrilineal (ZmPLA1) gene. The present study was focused on the generation of mutants for ZmPLA1 gene in maize inbred line LM13 through site-directed mutagenesis via CRISPR/Cas9-mediated ribonucleoprotein (RNP) complex method to increase the haploid induction rate. Three single guide RNAs (sgRNAs) for the ZmPLA1 gene locus were used for transforming the 14 days old immature embryos via bombardment. 373 regenerated plants were subjected to mutation detection followed by Sanger's sequencing. Out of three putative mutants identified, one mutant depicted one base pair substitution and one base pair deletion at the target site.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Gm Crops & Food-Biotechnology in Agriculture and the Food Chain
Gm Crops & Food-Biotechnology in Agriculture and the Food Chain Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
8.10
自引率
10.30%
发文量
22
期刊介绍: GM Crops & Food - Biotechnology in Agriculture and the Food Chain aims to publish high quality research papers, reviews, and commentaries on a wide range of topics involving genetically modified (GM) crops in agriculture and genetically modified food. The journal provides a platform for research papers addressing fundamental questions in the development, testing, and application of transgenic crops. The journal further covers topics relating to socio-economic issues, commercialization, trade and societal issues. GM Crops & Food aims to provide an international forum on all issues related to GM crops, especially toward meaningful communication between scientists and policy-makers. GM Crops & Food will publish relevant and high-impact original research with a special focus on novelty-driven studies with the potential for application. The journal also publishes authoritative review articles on current research and policy initiatives, and commentary on broad perspectives regarding genetically modified crops. The journal serves a wide readership including scientists, breeders, and policy-makers, as well as a wider community of readers (educators, policy makers, scholars, science writers and students) interested in agriculture, medicine, biotechnology, investment, and technology transfer. Topics covered include, but are not limited to: • Production and analysis of transgenic crops • Gene insertion studies • Gene silencing • Factors affecting gene expression • Post-translational analysis • Molecular farming • Field trial analysis • Commercialization of modified crops • Safety and regulatory affairs BIOLOGICAL SCIENCE AND TECHNOLOGY • Biofuels • Data from field trials • Development of transformation technology • Elimination of pollutants (Bioremediation) • Gene silencing mechanisms • Genome Editing • Herbicide resistance • Molecular farming • Pest resistance • Plant reproduction (e.g., male sterility, hybrid breeding, apomixis) • Plants with altered composition • Tolerance to abiotic stress • Transgenesis in agriculture • Biofortification and nutrients improvement • Genomic, proteomic and bioinformatics methods used for developing GM cops ECONOMIC, POLITICAL AND SOCIAL ISSUES • Commercialization • Consumer attitudes • International bodies • National and local government policies • Public perception, intellectual property, education, (bio)ethical issues • Regulation, environmental impact and containment • Socio-economic impact • Food safety and security • Risk assessments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信