有无通知隔壁和街对面邻居的情况下修复双栅栏:为什么革兰氏阴性菌的生物质膜显示不对称?

IF 3.4 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Mikhail Bogdanov
{"title":"有无通知隔壁和街对面邻居的情况下修复双栅栏:为什么革兰氏阴性菌的生物质膜显示不对称?","authors":"Mikhail Bogdanov","doi":"10.1042/ETLS20230042","DOIUrl":null,"url":null,"abstract":"<p><p>The complex two-membrane organization of the envelope of Gram-negative bacteria imposes an unique biosynthetic and topological constraints that can affect translocation of lipids and proteins synthesized on the cytoplasm facing leaflet of the cytoplasmic (inner) membrane (IM), across the IM and between the IM and outer membrane (OM). Balanced growth of two membranes and continuous loss of phospholipids in the periplasmic leaflet of the IM as metabolic precursors for envelope components and for translocation to the OM requires a constant supply of phospholipids in the IM cytosolic leaflet. At present we have no explanation as to why the biogenic E. coli IM displays asymmetry. Lipid asymmetry is largely related to highly entropically disfavored, unequal headgroup and acyl group asymmetries which are usually actively maintained by active mechanisms. However, these mechanisms are largely unknown for bacteria. Alternatively, lipid asymmetry in biogenic IM could be metabolically controlled in order to maintain uniform bilayer growth and asymmetric transmembrane arrangement by balancing temporally the net rates of synthesis and flip-flop, inter IM and OM bidirectional flows and bilayer chemical and physical properties as spontaneous response. Does such flippase-less or 'lipid only\", 'passive' mechanism of generation and maintenance of lipid asymmetry exists in the IM? The driving force for IM asymmetry can arise from the packing requirements imposed upon the bilayer system during cell division through disproportional distribution of two negatively curved phospholipids, phosphatidylethanolamine and cardiolipin, with consistent reciprocal tendency to increase and decrease lipid order in each membrane leaflet respectively.</p>","PeriodicalId":46394,"journal":{"name":"Emerging Topics in Life Sciences","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10725183/pdf/","citationCount":"2","resultStr":"{\"title\":\"Renovating a double fence with or without notifying the next door and across the street neighbors: why the biogenic cytoplasmic membrane of Gram-negative bacteria display asymmetry?\",\"authors\":\"Mikhail Bogdanov\",\"doi\":\"10.1042/ETLS20230042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The complex two-membrane organization of the envelope of Gram-negative bacteria imposes an unique biosynthetic and topological constraints that can affect translocation of lipids and proteins synthesized on the cytoplasm facing leaflet of the cytoplasmic (inner) membrane (IM), across the IM and between the IM and outer membrane (OM). Balanced growth of two membranes and continuous loss of phospholipids in the periplasmic leaflet of the IM as metabolic precursors for envelope components and for translocation to the OM requires a constant supply of phospholipids in the IM cytosolic leaflet. At present we have no explanation as to why the biogenic E. coli IM displays asymmetry. Lipid asymmetry is largely related to highly entropically disfavored, unequal headgroup and acyl group asymmetries which are usually actively maintained by active mechanisms. However, these mechanisms are largely unknown for bacteria. Alternatively, lipid asymmetry in biogenic IM could be metabolically controlled in order to maintain uniform bilayer growth and asymmetric transmembrane arrangement by balancing temporally the net rates of synthesis and flip-flop, inter IM and OM bidirectional flows and bilayer chemical and physical properties as spontaneous response. Does such flippase-less or 'lipid only\\\", 'passive' mechanism of generation and maintenance of lipid asymmetry exists in the IM? The driving force for IM asymmetry can arise from the packing requirements imposed upon the bilayer system during cell division through disproportional distribution of two negatively curved phospholipids, phosphatidylethanolamine and cardiolipin, with consistent reciprocal tendency to increase and decrease lipid order in each membrane leaflet respectively.</p>\",\"PeriodicalId\":46394,\"journal\":{\"name\":\"Emerging Topics in Life Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10725183/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Emerging Topics in Life Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1042/ETLS20230042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Topics in Life Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1042/ETLS20230042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 2

摘要

革兰氏阴性菌包膜的复杂双膜组织施加了独特的生物合成和拓扑限制,可以影响在面向胞质(内)膜(IM)小叶的细胞质上合成的脂质和蛋白质的易位,穿过内膜以及在内膜和外膜(OM)之间。两种膜的平衡生长和作为包膜成分的代谢前体的磷脂在IM质周小叶中的持续损失以及向OM转运需要IM细胞质小叶中磷脂的持续供应。目前我们还没有解释为什么生物源大肠杆菌IM显示不对称。脂质不对称在很大程度上与高度熵不利、不相等的头基和酰基不对称有关,这种不对称通常由主动机制积极维持。然而,细菌的这些机制在很大程度上是未知的。或者,生物源性IM中的脂质不对称可以通过暂时平衡合成和翻转的净速率、IM和OM之间的双向流动以及作为自发反应的双层化学和物理性质来控制,以维持均匀的双分子层生长和不对称的跨膜排列。在IM中是否存在这种无翻转酶或“仅脂质”、“被动”的脂质不对称的产生和维持机制?磷脂酰乙醇胺和心磷脂这两种负弯曲的磷脂在细胞分裂过程中不成比例地分布,从而对双层系统施加了包装要求,这两种磷脂在每个膜小叶中分别具有增加和减少脂质顺序的相互作用趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Renovating a double fence with or without notifying the next door and across the street neighbors: why the biogenic cytoplasmic membrane of Gram-negative bacteria display asymmetry?

The complex two-membrane organization of the envelope of Gram-negative bacteria imposes an unique biosynthetic and topological constraints that can affect translocation of lipids and proteins synthesized on the cytoplasm facing leaflet of the cytoplasmic (inner) membrane (IM), across the IM and between the IM and outer membrane (OM). Balanced growth of two membranes and continuous loss of phospholipids in the periplasmic leaflet of the IM as metabolic precursors for envelope components and for translocation to the OM requires a constant supply of phospholipids in the IM cytosolic leaflet. At present we have no explanation as to why the biogenic E. coli IM displays asymmetry. Lipid asymmetry is largely related to highly entropically disfavored, unequal headgroup and acyl group asymmetries which are usually actively maintained by active mechanisms. However, these mechanisms are largely unknown for bacteria. Alternatively, lipid asymmetry in biogenic IM could be metabolically controlled in order to maintain uniform bilayer growth and asymmetric transmembrane arrangement by balancing temporally the net rates of synthesis and flip-flop, inter IM and OM bidirectional flows and bilayer chemical and physical properties as spontaneous response. Does such flippase-less or 'lipid only", 'passive' mechanism of generation and maintenance of lipid asymmetry exists in the IM? The driving force for IM asymmetry can arise from the packing requirements imposed upon the bilayer system during cell division through disproportional distribution of two negatively curved phospholipids, phosphatidylethanolamine and cardiolipin, with consistent reciprocal tendency to increase and decrease lipid order in each membrane leaflet respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
94
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信