{"title":"青少年在不稳定表面上的姿势控制与适应策略。","authors":"Qian Qi Lai, Darwin Gouwanda, Alpha A Gopalai","doi":"10.1123/mc.2021-0138","DOIUrl":null,"url":null,"abstract":"<p><p>Balance control is essential for postural adjustment in physical activities. This study investigates the behavior of human postural control and the coordination and adaptation strategy of hip, knee, and ankle when standing on an unstable surface. Twenty participants were recruited. Four different conditions were investigated: a quiet bipedal stance with eyes open and eyes closed, and standing on an unstable surface with eyes open and eyes closed. Other than the joint angle, the standard body sway measures, such as sway area and sway velocity, were computed. A nonlinear time series measure, that is, sample entropy, was used to determine the regularity of the time series and body adaptability to change and perturbation. The results show that the body sway increases as the difficulty increases. This study also confirms the coordination of the hip, knee, and ankle to maintain body balance on the unstable surface by decreasing the joint angle and adopting a lower posture. Even though the individual joint has lower sample entropy value and is deemed to be rigid and less adaptive to perturbation, the postural control exhibits higher sample entropy value, particularly in the anterior-posterior direction, and has the ability to stabilize the body by manipulating the joints simultaneously. These outcomes suggest that an unstable surface not only challenges the human postural control, but also reduces the hip, knee, and ankle adaptability to perturbation, thus making it a great tool to train body balance.</p>","PeriodicalId":49795,"journal":{"name":"Motor Control","volume":"27 2","pages":"179-193"},"PeriodicalIF":0.9000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Postural Control and Adaptation Strategy of Young Adults on Unstable Surface.\",\"authors\":\"Qian Qi Lai, Darwin Gouwanda, Alpha A Gopalai\",\"doi\":\"10.1123/mc.2021-0138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Balance control is essential for postural adjustment in physical activities. This study investigates the behavior of human postural control and the coordination and adaptation strategy of hip, knee, and ankle when standing on an unstable surface. Twenty participants were recruited. Four different conditions were investigated: a quiet bipedal stance with eyes open and eyes closed, and standing on an unstable surface with eyes open and eyes closed. Other than the joint angle, the standard body sway measures, such as sway area and sway velocity, were computed. A nonlinear time series measure, that is, sample entropy, was used to determine the regularity of the time series and body adaptability to change and perturbation. The results show that the body sway increases as the difficulty increases. This study also confirms the coordination of the hip, knee, and ankle to maintain body balance on the unstable surface by decreasing the joint angle and adopting a lower posture. Even though the individual joint has lower sample entropy value and is deemed to be rigid and less adaptive to perturbation, the postural control exhibits higher sample entropy value, particularly in the anterior-posterior direction, and has the ability to stabilize the body by manipulating the joints simultaneously. These outcomes suggest that an unstable surface not only challenges the human postural control, but also reduces the hip, knee, and ankle adaptability to perturbation, thus making it a great tool to train body balance.</p>\",\"PeriodicalId\":49795,\"journal\":{\"name\":\"Motor Control\",\"volume\":\"27 2\",\"pages\":\"179-193\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Motor Control\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1123/mc.2021-0138\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Motor Control","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1123/mc.2021-0138","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Postural Control and Adaptation Strategy of Young Adults on Unstable Surface.
Balance control is essential for postural adjustment in physical activities. This study investigates the behavior of human postural control and the coordination and adaptation strategy of hip, knee, and ankle when standing on an unstable surface. Twenty participants were recruited. Four different conditions were investigated: a quiet bipedal stance with eyes open and eyes closed, and standing on an unstable surface with eyes open and eyes closed. Other than the joint angle, the standard body sway measures, such as sway area and sway velocity, were computed. A nonlinear time series measure, that is, sample entropy, was used to determine the regularity of the time series and body adaptability to change and perturbation. The results show that the body sway increases as the difficulty increases. This study also confirms the coordination of the hip, knee, and ankle to maintain body balance on the unstable surface by decreasing the joint angle and adopting a lower posture. Even though the individual joint has lower sample entropy value and is deemed to be rigid and less adaptive to perturbation, the postural control exhibits higher sample entropy value, particularly in the anterior-posterior direction, and has the ability to stabilize the body by manipulating the joints simultaneously. These outcomes suggest that an unstable surface not only challenges the human postural control, but also reduces the hip, knee, and ankle adaptability to perturbation, thus making it a great tool to train body balance.
期刊介绍:
Motor Control (MC), a peer-reviewed journal, provides a multidisciplinary examination of human movement across the lifespan. To keep you abreast of current developments in the field of motor control, it offers timely coverage of important topics, including issues related to motor disorders. This international journal publishes many types of research papers, from clinical experimental to modeling and theoretical studies. These papers come from such varied disciplines as biomechanics, kinesiology, neurophysiology, neuroscience, psychology, physical medicine, and rehabilitation.
Motor Control, the official journal of the International Society of Motor Control, is designed to provide a multidisciplinary forum for the exchange of scientific information on the control of human movement across the lifespan, including issues related to motor disorders.
Motor Control encourages submission of papers from a variety of disciplines including, but not limited to, biomechanics, kinesiology, neurophysiology, neuroscience, psychology, physical medicine, and rehabilitation. This peer-reviewed journal publishes a wide variety of types of research papers including clinical experimental, modeling, and theoretical studies. To be considered for publication, papers should clearly demonstrate a contribution to the understanding of control of movement.
In addition to publishing research papers, Motor Control publishes review articles, quick communications, commentaries, target articles, and book reviews. When warranted, an entire issue may be devoted to a specific topic within the area of motor control.