Eric J Korpela, Martin M Sirk, Jerry Edelstein, Jason B McPhate, Richard M Tuminello, Andrew W Stephan, Scott L England, Thomas J Immel
{"title":"ICON EUV光谱仪的飞行性能。","authors":"Eric J Korpela, Martin M Sirk, Jerry Edelstein, Jason B McPhate, Richard M Tuminello, Andrew W Stephan, Scott L England, Thomas J Immel","doi":"10.1007/s11214-023-00963-1","DOIUrl":null,"url":null,"abstract":"<p><p>We present in-flight performance measurements of the Ionospheric Connection Explorer EUV spectrometer, <i>ICON EUV</i>, a wide field ( <math><msup><mn>17</mn> <mo>∘</mo></msup> <mo>×</mo> <msup><mn>12</mn> <mo>∘</mo></msup> </math> ) extreme ultraviolet (EUV) imaging spectrograph designed to observe the lower ionosphere at tangent altitudes between 100 and 500 km. The primary targets of the spectrometer, which has a spectral range of 54-88 nm, are the Oii emission lines at 61.6 nmand 83.4 nm. In flight calibration and performance measurement has shown that the instrument has met all of the science performance requirements. We discuss the observed and expected changes in the instrument performance due to microchannel plate charge depletion, and how these changes were tracked over the first two years of flight. This paper shows raw data products from this instrument. A parallel paper (Stephan et al. in Space Sci. Rev. 218:63, 2022) in this volume discusses the use of these raw products to determine O<sup>+</sup> density profiles versus altitude.</p>","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":"219 3","pages":"24"},"PeriodicalIF":9.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10050024/pdf/","citationCount":"0","resultStr":"{\"title\":\"In-Flight Performance of the ICON EUV Spectrograph.\",\"authors\":\"Eric J Korpela, Martin M Sirk, Jerry Edelstein, Jason B McPhate, Richard M Tuminello, Andrew W Stephan, Scott L England, Thomas J Immel\",\"doi\":\"10.1007/s11214-023-00963-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We present in-flight performance measurements of the Ionospheric Connection Explorer EUV spectrometer, <i>ICON EUV</i>, a wide field ( <math><msup><mn>17</mn> <mo>∘</mo></msup> <mo>×</mo> <msup><mn>12</mn> <mo>∘</mo></msup> </math> ) extreme ultraviolet (EUV) imaging spectrograph designed to observe the lower ionosphere at tangent altitudes between 100 and 500 km. The primary targets of the spectrometer, which has a spectral range of 54-88 nm, are the Oii emission lines at 61.6 nmand 83.4 nm. In flight calibration and performance measurement has shown that the instrument has met all of the science performance requirements. We discuss the observed and expected changes in the instrument performance due to microchannel plate charge depletion, and how these changes were tracked over the first two years of flight. This paper shows raw data products from this instrument. A parallel paper (Stephan et al. in Space Sci. Rev. 218:63, 2022) in this volume discusses the use of these raw products to determine O<sup>+</sup> density profiles versus altitude.</p>\",\"PeriodicalId\":21902,\"journal\":{\"name\":\"Space Science Reviews\",\"volume\":\"219 3\",\"pages\":\"24\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10050024/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Space Science Reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1007/s11214-023-00963-1\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Space Science Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s11214-023-00963-1","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
我们展示了电离层连接探测器EUV光谱仪(ICON EUV)的飞行性能测量,这是一种宽视场(17°× 12°)极紫外线(EUV)成像光谱仪,设计用于观测100至500公里正切高度的电离层下部。该光谱仪的光谱范围为54-88 nm,主要目标是61.6 nm和83.4 nm的oil发射谱线。在飞行中进行的标定和性能测试表明,该仪器满足了所有的科学性能要求。我们讨论了由于微通道板电荷耗尽而导致的仪器性能的观察和预期变化,以及如何在飞行的前两年跟踪这些变化。本文给出了该仪器的原始数据产品。一篇平行论文(Stephan et al. Space science)。Rev. 218: 63,2022)在本卷中讨论了使用这些原始产品来确定O+密度剖面与海拔的关系。
In-Flight Performance of the ICON EUV Spectrograph.
We present in-flight performance measurements of the Ionospheric Connection Explorer EUV spectrometer, ICON EUV, a wide field ( ) extreme ultraviolet (EUV) imaging spectrograph designed to observe the lower ionosphere at tangent altitudes between 100 and 500 km. The primary targets of the spectrometer, which has a spectral range of 54-88 nm, are the Oii emission lines at 61.6 nmand 83.4 nm. In flight calibration and performance measurement has shown that the instrument has met all of the science performance requirements. We discuss the observed and expected changes in the instrument performance due to microchannel plate charge depletion, and how these changes were tracked over the first two years of flight. This paper shows raw data products from this instrument. A parallel paper (Stephan et al. in Space Sci. Rev. 218:63, 2022) in this volume discusses the use of these raw products to determine O+ density profiles versus altitude.
期刊介绍:
Space Science Reviews (SSRv) stands as an international journal dedicated to scientific space research, offering a contemporary synthesis across various branches of space exploration. Emphasizing scientific outcomes and instruments, SSRv spans astrophysics, physics of planetary systems, solar physics, and the physics of magnetospheres & interplanetary matter.
Beyond Topical Collections and invited Review Articles, Space Science Reviews welcomes unsolicited Review Articles and Special Communications. The latter encompass papers related to a prior topical volume/collection, report-type papers, or timely contributions addressing a robust combination of space science and technology. These papers succinctly summarize both the science and technology aspects of instruments or missions in a single publication.