{"title":"NF-κ B信号通路中蛋白质合成时滞和负反馈回路的组合动力学","authors":"Fang Yan, Li Liu, Qingyun Wang","doi":"10.1049/iet-syb.2020.0034","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The transcription factor NF-<i>κ</i> B links immune response and inflammatory reaction and its different oscillation patterns determine different cell fates. In this study, a mathematical model with I<i>κ</i> B<i>α</i> protein synthesis time delay is developed based on the experimental evidences. The results show that time delay has the ability to drive oscillation of NF-<i>κ</i> B via Hopf bifurcation. Meanwhile, the amplitude and period are sensitive to the time delay. Moreover, the time delay threshold is a function of four parameters characterising the negative feedback loop. Likewise, the parameters also have effects on the amplitude and period of NF-<i>κ</i> B oscillation induced by time delay. Therefore, the oscillation patterns of NF-<i>κ</i> B are collaborative results of time delay coupled with the negative feedback loop. These results not only enhance the understanding of NF-<i>κ</i> B biological oscillation but also provide clues for the development of anti-inflammatory or anti-cancer drugs.</p>\n </div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/iet-syb.2020.0034","citationCount":"1","resultStr":"{\"title\":\"Combinatorial dynamics of protein synthesis time delay and negative feedback loop in NF-κ B signalling pathway\",\"authors\":\"Fang Yan, Li Liu, Qingyun Wang\",\"doi\":\"10.1049/iet-syb.2020.0034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>The transcription factor NF-<i>κ</i> B links immune response and inflammatory reaction and its different oscillation patterns determine different cell fates. In this study, a mathematical model with I<i>κ</i> B<i>α</i> protein synthesis time delay is developed based on the experimental evidences. The results show that time delay has the ability to drive oscillation of NF-<i>κ</i> B via Hopf bifurcation. Meanwhile, the amplitude and period are sensitive to the time delay. Moreover, the time delay threshold is a function of four parameters characterising the negative feedback loop. Likewise, the parameters also have effects on the amplitude and period of NF-<i>κ</i> B oscillation induced by time delay. Therefore, the oscillation patterns of NF-<i>κ</i> B are collaborative results of time delay coupled with the negative feedback loop. These results not only enhance the understanding of NF-<i>κ</i> B biological oscillation but also provide clues for the development of anti-inflammatory or anti-cancer drugs.</p>\\n </div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/iet-syb.2020.0034\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/iet-syb.2020.0034\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/iet-syb.2020.0034","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Combinatorial dynamics of protein synthesis time delay and negative feedback loop in NF-κ B signalling pathway
The transcription factor NF-κ B links immune response and inflammatory reaction and its different oscillation patterns determine different cell fates. In this study, a mathematical model with Iκ Bα protein synthesis time delay is developed based on the experimental evidences. The results show that time delay has the ability to drive oscillation of NF-κ B via Hopf bifurcation. Meanwhile, the amplitude and period are sensitive to the time delay. Moreover, the time delay threshold is a function of four parameters characterising the negative feedback loop. Likewise, the parameters also have effects on the amplitude and period of NF-κ B oscillation induced by time delay. Therefore, the oscillation patterns of NF-κ B are collaborative results of time delay coupled with the negative feedback loop. These results not only enhance the understanding of NF-κ B biological oscillation but also provide clues for the development of anti-inflammatory or anti-cancer drugs.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.