为不确定的饮用水未来建立复原力

Jingyan Huang, Taler Bixler, Weiwei Mo
{"title":"为不确定的饮用水未来建立复原力","authors":"Jingyan Huang,&nbsp;Taler Bixler,&nbsp;Weiwei Mo","doi":"10.1002/aws2.1362","DOIUrl":null,"url":null,"abstract":"<p>Enhancing drinking water resilience has become increasingly important. However, a comprehensive analysis of drinking water emergency countermeasures is lacking. This study evaluated eight countermeasures including monitoring, local alternatives, reclaimed water, interconnection, bulk water, pre-packaged water, emergency treatment, and isolation valves from resilience and sustainability (i.e., life cycle cost) perspectives. While countermeasures such as interconnections perform relatively well from both perspectives, there is a clear trade-off between resilience and cost. Local alternatives and emergency treatment respond quickly and provide sustained supply during emergencies but may incur higher costs. Bulk water and pre-packaged water are typically inexpensive but have limited supply capacity and take time to distribute. As future threats are likely to become more frequent and prolonged, it is prudent for service providers to invest in countermeasures that perform well in both resilience and cost and use an integrated approach that combines high capital projects with bulk/pre-packaged water contracts.</p>","PeriodicalId":101301,"journal":{"name":"AWWA water science","volume":"5 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://awwa.onlinelibrary.wiley.com/doi/epdf/10.1002/aws2.1362","citationCount":"0","resultStr":"{\"title\":\"Building resilience for an uncertain drinking water future\",\"authors\":\"Jingyan Huang,&nbsp;Taler Bixler,&nbsp;Weiwei Mo\",\"doi\":\"10.1002/aws2.1362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Enhancing drinking water resilience has become increasingly important. However, a comprehensive analysis of drinking water emergency countermeasures is lacking. This study evaluated eight countermeasures including monitoring, local alternatives, reclaimed water, interconnection, bulk water, pre-packaged water, emergency treatment, and isolation valves from resilience and sustainability (i.e., life cycle cost) perspectives. While countermeasures such as interconnections perform relatively well from both perspectives, there is a clear trade-off between resilience and cost. Local alternatives and emergency treatment respond quickly and provide sustained supply during emergencies but may incur higher costs. Bulk water and pre-packaged water are typically inexpensive but have limited supply capacity and take time to distribute. As future threats are likely to become more frequent and prolonged, it is prudent for service providers to invest in countermeasures that perform well in both resilience and cost and use an integrated approach that combines high capital projects with bulk/pre-packaged water contracts.</p>\",\"PeriodicalId\":101301,\"journal\":{\"name\":\"AWWA water science\",\"volume\":\"5 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://awwa.onlinelibrary.wiley.com/doi/epdf/10.1002/aws2.1362\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AWWA water science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aws2.1362\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AWWA water science","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aws2.1362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提高饮用水恢复力变得越来越重要。然而,对饮用水应急对策的综合分析还很缺乏。本研究从弹性和可持续性(即生命周期成本)的角度评估了8种对策,包括监测、当地替代方案、再生水、互联、散装水、预包装水、应急处理和隔离阀。虽然从两个角度来看,互连等对策的效果都相对较好,但在弹性和成本之间存在明显的权衡。当地替代方案和紧急治疗反应迅速,并在紧急情况下提供持续供应,但可能产生较高的费用。散装水和预包装水通常价格低廉,但供应能力有限,分发需要时间。由于未来的威胁可能会变得更加频繁和持久,服务提供商应该谨慎地投资于在弹性和成本方面都表现良好的对策,并采用将高资本项目与散装/预包装水合同相结合的综合方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Building resilience for an uncertain drinking water future

Building resilience for an uncertain drinking water future

Enhancing drinking water resilience has become increasingly important. However, a comprehensive analysis of drinking water emergency countermeasures is lacking. This study evaluated eight countermeasures including monitoring, local alternatives, reclaimed water, interconnection, bulk water, pre-packaged water, emergency treatment, and isolation valves from resilience and sustainability (i.e., life cycle cost) perspectives. While countermeasures such as interconnections perform relatively well from both perspectives, there is a clear trade-off between resilience and cost. Local alternatives and emergency treatment respond quickly and provide sustained supply during emergencies but may incur higher costs. Bulk water and pre-packaged water are typically inexpensive but have limited supply capacity and take time to distribute. As future threats are likely to become more frequent and prolonged, it is prudent for service providers to invest in countermeasures that perform well in both resilience and cost and use an integrated approach that combines high capital projects with bulk/pre-packaged water contracts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信