{"title":"精神分裂症患者脑样本中S100基因家族的上调:荟萃分析。","authors":"Anat Shamir, Assif Yitzhaky, Aviv Segev, Vahram Haroutunian, Pavel Katsel, Libi Hertzberg","doi":"10.1007/s12017-023-08743-4","DOIUrl":null,"url":null,"abstract":"<p><p>The S100 proteins family is known to affect neuroinflammation and astrocyte activation, which have been suggested to be contributors to the pathogenesis of schizophrenia. We conducted a systematic meta-analysis of S100 genes differential expression in postmortem samples of patients with schizophrenia vs. healthy controls, following the commonly used Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Twelve microarray datasets met the inclusion criteria (overall 511 samples, 253 schizophrenia and 258 controls were analyzed). Nine out of 21 genes were significantly up-regulated or with tendency for up-regulation. A per-sample fold change analysis indicated that the S100 genes' up-regulation was concentrated in a subgroup of the patients. None of the genes have been found to be down-regulated. ANXA3, which encodes Annexin 3 protein and was associated with neuroinflammation, was up-regulated and positively correlated with the S100 genes' expression pattern. In addition, astrocytes and endothelial cell markers were significantly correlated with S100A8 expression. S100 correlation with ANXA3 and endothelial cell markers suggests that the up-regulation we detected reflects increased inflammation. However, it might also reflect astrocytes abundance or activation. The fact that S100 proteins were shown to be up-regulated in blood samples and other body fluids of patients with schizophrenia suggests a potential role as biomarkers, which might help disease subtyping, and the development of etiological treatments for immune dysregulation in schizophrenia.</p>","PeriodicalId":19304,"journal":{"name":"NeuroMolecular Medicine","volume":" ","pages":"388-401"},"PeriodicalIF":3.3000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Up-Regulation of S100 Gene Family in Brain Samples of a Subgroup of Individuals with Schizophrenia: Meta-analysis.\",\"authors\":\"Anat Shamir, Assif Yitzhaky, Aviv Segev, Vahram Haroutunian, Pavel Katsel, Libi Hertzberg\",\"doi\":\"10.1007/s12017-023-08743-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The S100 proteins family is known to affect neuroinflammation and astrocyte activation, which have been suggested to be contributors to the pathogenesis of schizophrenia. We conducted a systematic meta-analysis of S100 genes differential expression in postmortem samples of patients with schizophrenia vs. healthy controls, following the commonly used Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Twelve microarray datasets met the inclusion criteria (overall 511 samples, 253 schizophrenia and 258 controls were analyzed). Nine out of 21 genes were significantly up-regulated or with tendency for up-regulation. A per-sample fold change analysis indicated that the S100 genes' up-regulation was concentrated in a subgroup of the patients. None of the genes have been found to be down-regulated. ANXA3, which encodes Annexin 3 protein and was associated with neuroinflammation, was up-regulated and positively correlated with the S100 genes' expression pattern. In addition, astrocytes and endothelial cell markers were significantly correlated with S100A8 expression. S100 correlation with ANXA3 and endothelial cell markers suggests that the up-regulation we detected reflects increased inflammation. However, it might also reflect astrocytes abundance or activation. The fact that S100 proteins were shown to be up-regulated in blood samples and other body fluids of patients with schizophrenia suggests a potential role as biomarkers, which might help disease subtyping, and the development of etiological treatments for immune dysregulation in schizophrenia.</p>\",\"PeriodicalId\":19304,\"journal\":{\"name\":\"NeuroMolecular Medicine\",\"volume\":\" \",\"pages\":\"388-401\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NeuroMolecular Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12017-023-08743-4\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/4/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroMolecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12017-023-08743-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Up-Regulation of S100 Gene Family in Brain Samples of a Subgroup of Individuals with Schizophrenia: Meta-analysis.
The S100 proteins family is known to affect neuroinflammation and astrocyte activation, which have been suggested to be contributors to the pathogenesis of schizophrenia. We conducted a systematic meta-analysis of S100 genes differential expression in postmortem samples of patients with schizophrenia vs. healthy controls, following the commonly used Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Twelve microarray datasets met the inclusion criteria (overall 511 samples, 253 schizophrenia and 258 controls were analyzed). Nine out of 21 genes were significantly up-regulated or with tendency for up-regulation. A per-sample fold change analysis indicated that the S100 genes' up-regulation was concentrated in a subgroup of the patients. None of the genes have been found to be down-regulated. ANXA3, which encodes Annexin 3 protein and was associated with neuroinflammation, was up-regulated and positively correlated with the S100 genes' expression pattern. In addition, astrocytes and endothelial cell markers were significantly correlated with S100A8 expression. S100 correlation with ANXA3 and endothelial cell markers suggests that the up-regulation we detected reflects increased inflammation. However, it might also reflect astrocytes abundance or activation. The fact that S100 proteins were shown to be up-regulated in blood samples and other body fluids of patients with schizophrenia suggests a potential role as biomarkers, which might help disease subtyping, and the development of etiological treatments for immune dysregulation in schizophrenia.
期刊介绍:
NeuroMolecular Medicine publishes cutting-edge original research articles and critical reviews on the molecular and biochemical basis of neurological disorders. Studies range from genetic analyses of human populations to animal and cell culture models of neurological disorders. Emerging findings concerning the identification of genetic aberrancies and their pathogenic mechanisms at the molecular and cellular levels will be included. Also covered are experimental analyses of molecular cascades involved in the development and adult plasticity of the nervous system, in neurological dysfunction, and in neuronal degeneration and repair. NeuroMolecular Medicine encompasses basic research in the fields of molecular genetics, signal transduction, plasticity, and cell death. The information published in NEMM will provide a window into the future of molecular medicine for the nervous system.