Michelle Rabbetts, Lenore Fahrig, Greg W Mitchell, Kevin C Hannah, Sara J Collins, Scott Wilson
{"title":"加拿大东部农业用地覆盖对鸟类生物多样性的直接和间接影响。","authors":"Michelle Rabbetts, Lenore Fahrig, Greg W Mitchell, Kevin C Hannah, Sara J Collins, Scott Wilson","doi":"10.1007/s10531-023-02559-1","DOIUrl":null,"url":null,"abstract":"<p><p>Agriculture is one of the largest threats to global biodiversity. However, most studies have focused only on the direct effects of agriculture on biodiversity, and few have addressed the indirect effects, potentially over or under-estimating the overall impacts of agriculture on biodiversity. The indirect effect is the response not to the agricultural cover types or operations <i>per se</i>, but instead, to the way that agriculture influences the extent and configuration of different types of natural land cover in the landscape. We used structural equation modelling (SEM) to evaluate the direct, indirect, and total effects of agriculture on species richness of three bird guilds: forest birds, shrub-edge birds, and open country birds. We found that forest bird richness was driven by the negative indirect effect of cropland via forest loss. Shrub-edge and open country bird richness increased with the amount of agriculture land covers; however, importantly, we found negative indirect effects of agriculture on both guilds via a reduction in more natural land covers. This latter result highlights how we would have over-estimated the positive effects of agriculture on shrub-edge and open country bird richness had we not measured both direct and indirect effects (i.e., the total effect size is less than the direct effect size). Overall, our results suggest that a bird-friendly agricultural landscape in our region would have forest that is configured to maximize forest edge, and a high proportion of perennial forage within the agricultural portion of the landscape.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s10531-023-02559-1.</p>","PeriodicalId":8843,"journal":{"name":"Biodiversity and Conservation","volume":"32 4","pages":"1403-1421"},"PeriodicalIF":3.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10039827/pdf/","citationCount":"0","resultStr":"{\"title\":\"Direct and indirect effects of agricultural land cover on avian biodiversity in eastern Canada.\",\"authors\":\"Michelle Rabbetts, Lenore Fahrig, Greg W Mitchell, Kevin C Hannah, Sara J Collins, Scott Wilson\",\"doi\":\"10.1007/s10531-023-02559-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Agriculture is one of the largest threats to global biodiversity. However, most studies have focused only on the direct effects of agriculture on biodiversity, and few have addressed the indirect effects, potentially over or under-estimating the overall impacts of agriculture on biodiversity. The indirect effect is the response not to the agricultural cover types or operations <i>per se</i>, but instead, to the way that agriculture influences the extent and configuration of different types of natural land cover in the landscape. We used structural equation modelling (SEM) to evaluate the direct, indirect, and total effects of agriculture on species richness of three bird guilds: forest birds, shrub-edge birds, and open country birds. We found that forest bird richness was driven by the negative indirect effect of cropland via forest loss. Shrub-edge and open country bird richness increased with the amount of agriculture land covers; however, importantly, we found negative indirect effects of agriculture on both guilds via a reduction in more natural land covers. This latter result highlights how we would have over-estimated the positive effects of agriculture on shrub-edge and open country bird richness had we not measured both direct and indirect effects (i.e., the total effect size is less than the direct effect size). Overall, our results suggest that a bird-friendly agricultural landscape in our region would have forest that is configured to maximize forest edge, and a high proportion of perennial forage within the agricultural portion of the landscape.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s10531-023-02559-1.</p>\",\"PeriodicalId\":8843,\"journal\":{\"name\":\"Biodiversity and Conservation\",\"volume\":\"32 4\",\"pages\":\"1403-1421\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10039827/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biodiversity and Conservation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10531-023-02559-1\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodiversity and Conservation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10531-023-02559-1","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
Direct and indirect effects of agricultural land cover on avian biodiversity in eastern Canada.
Agriculture is one of the largest threats to global biodiversity. However, most studies have focused only on the direct effects of agriculture on biodiversity, and few have addressed the indirect effects, potentially over or under-estimating the overall impacts of agriculture on biodiversity. The indirect effect is the response not to the agricultural cover types or operations per se, but instead, to the way that agriculture influences the extent and configuration of different types of natural land cover in the landscape. We used structural equation modelling (SEM) to evaluate the direct, indirect, and total effects of agriculture on species richness of three bird guilds: forest birds, shrub-edge birds, and open country birds. We found that forest bird richness was driven by the negative indirect effect of cropland via forest loss. Shrub-edge and open country bird richness increased with the amount of agriculture land covers; however, importantly, we found negative indirect effects of agriculture on both guilds via a reduction in more natural land covers. This latter result highlights how we would have over-estimated the positive effects of agriculture on shrub-edge and open country bird richness had we not measured both direct and indirect effects (i.e., the total effect size is less than the direct effect size). Overall, our results suggest that a bird-friendly agricultural landscape in our region would have forest that is configured to maximize forest edge, and a high proportion of perennial forage within the agricultural portion of the landscape.
Supplementary information: The online version contains supplementary material available at 10.1007/s10531-023-02559-1.
期刊介绍:
Biodiversity and Conservation is an international journal that publishes articles on all aspects of biological diversity-its description, analysis and conservation, and its controlled rational use by humankind. The scope of Biodiversity and Conservation is wide and multidisciplinary, and embraces all life-forms.
The journal presents research papers, as well as editorials, comments and research notes on biodiversity and conservation, and contributions dealing with the practicalities of conservation management, economic, social and political issues. The journal provides a forum for examining conflicts between sustainable development and human dependence on biodiversity in agriculture, environmental management and biotechnology, and encourages contributions from developing countries to promote broad global perspectives on matters of biodiversity and conservation.