{"title":"基于可变空间指数偏微分方程的图像去噪","authors":"Amine Laghrib, Lekbir Afraites","doi":"10.1016/j.acha.2023.101608","DOIUrl":null,"url":null,"abstract":"<div><p>Image denoising is always considered an important area of image processing. In this work, we address a new PDE-based model for image denoising that have been contaminated by multiplicative noise<span>, specially the Speckle one. We propose a new class of PDEs whose nonlinear structure depends on a spatially tensor depending quantity attached to the desired solution, which takes into account the gray level information by introducing a gray level indicator function in the diffusion coefficient<span>. We give some theoretical results, discretization and also stability condition for the suggested model. Finally, we carry out some numerical results to approve the effectiveness of our model by comparing the results obtained with some competitive models.</span></span></p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"68 ","pages":"Article 101608"},"PeriodicalIF":2.6000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image denoising based on a variable spatially exponent PDE\",\"authors\":\"Amine Laghrib, Lekbir Afraites\",\"doi\":\"10.1016/j.acha.2023.101608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Image denoising is always considered an important area of image processing. In this work, we address a new PDE-based model for image denoising that have been contaminated by multiplicative noise<span>, specially the Speckle one. We propose a new class of PDEs whose nonlinear structure depends on a spatially tensor depending quantity attached to the desired solution, which takes into account the gray level information by introducing a gray level indicator function in the diffusion coefficient<span>. We give some theoretical results, discretization and also stability condition for the suggested model. Finally, we carry out some numerical results to approve the effectiveness of our model by comparing the results obtained with some competitive models.</span></span></p></div>\",\"PeriodicalId\":55504,\"journal\":{\"name\":\"Applied and Computational Harmonic Analysis\",\"volume\":\"68 \",\"pages\":\"Article 101608\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Harmonic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1063520323000957\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520323000957","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Image denoising based on a variable spatially exponent PDE
Image denoising is always considered an important area of image processing. In this work, we address a new PDE-based model for image denoising that have been contaminated by multiplicative noise, specially the Speckle one. We propose a new class of PDEs whose nonlinear structure depends on a spatially tensor depending quantity attached to the desired solution, which takes into account the gray level information by introducing a gray level indicator function in the diffusion coefficient. We give some theoretical results, discretization and also stability condition for the suggested model. Finally, we carry out some numerical results to approve the effectiveness of our model by comparing the results obtained with some competitive models.
期刊介绍:
Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.