Haopeng Pang, Xuefei Dang, Yan Ren, Zhenwei Yao, Yehua Shen, Xiaoyuan Feng, Zhongmin Wang
{"title":"DKI可以区分高级别胶质瘤和idh1突变的低级别胶质瘤,并与它们不同的核质比相关:一项局部活检研究。","authors":"Haopeng Pang, Xuefei Dang, Yan Ren, Zhenwei Yao, Yehua Shen, Xiaoyuan Feng, Zhongmin Wang","doi":"10.1007/s00330-023-10325-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To explore whether differences in diffusional kurtosis imaging (DKI) between therapy-naïve high-grade gliomas (HGGs) and low-grade gliomas (LGGs) are related to the cellularity and/or the nuclear-to-cytoplasmic (N/C) ratio.</p><p><strong>Methods: </strong>We analyzed 44 and 40 diffuse glioma samples that were pathologically confirmed as HGGs and IDH1-mutant LGGs, respectively. The DKI parameters included kurtosis metrics (mean kurtosis [MK], axial kurtosis [K<sub>//</sub>], and radial kurtosis [K<sub>⊥</sub>]), and the diffusional metrics (fractional anisotropy [FA], mean diffusion [MD], axial diffusion [λ<sub>//</sub>], and radial diffusion [λ<sub>⊥</sub>]). The cellularity and the N/C ratio were compared within LGGs and HGGs using the Mann-Whitney U test (significant level, p < 0.007 [0.05/7]); Bonferroni correction). Spearman's correlation analysis was used to calculate the correlation coefficients among DKI metrics, cellularity, and the N/C ratio at a significant level of p = 0.05.</p><p><strong>Results: </strong>Excluding FA, all DKI metrics showed significant differences between HGGs and LGGs (all p ≤ 0.001). The N/C ratio of HGGs was significantly higher than that of LGGs; however, differences in cellularity were not significant between the two glioma groups (p = 0.525). Similarly, excluding FA, all DKI metrics were significantly correlated with the N/C ratio in LGGs, with correlation coefficients of - 0.365 (MD), - 0.313 (λ<sub>//</sub>), - 0.376 (λ<sub>⊥</sub>), 0.859 (MK), 0.772 (K<sub>//</sub>), and 0.842 (K<sub>//</sub>). There was a non-significant correlation between any DKI parameters and the cellularity in LGGs. Additionally, the cellularity and N/C ratios in HGGs did not correlate with any DKI metrics.</p><p><strong>Conclusions: </strong>DKI differentiate LGGs from HGGs associated with their different N/C ratios.</p><p><strong>Clinical relevance statement: </strong>This study shows that DKI differentiates LGGs from HGGs may correlated with their different N/C ratios, this could provide a possible histopathological mechanism about why DKI can DKI differentiate LGGs from HGGs.</p><p><strong>Key points: </strong>• Excluding FA, all DKI metrics showed a significant difference between high-grade gliomas and IDH1-mutant low-grade gliomas. • The nuclear-to-cytoplasm ratios in high-grade gliomas were significantly more extensive than that in IDH1-mutant low-grade gliomas, but not the cellularity. • Significant associations were seen between DKI measures and the N/C ratio; a non-significant correlation was noted between any DKI metric and cellularity in glioma specimens.</p>","PeriodicalId":12076,"journal":{"name":"European Radiology","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DKI can distinguish high-grade gliomas from IDH1-mutant low-grade gliomas and correlate with their different nuclear-to-cytoplasm ratio: a localized biopsy-based study.\",\"authors\":\"Haopeng Pang, Xuefei Dang, Yan Ren, Zhenwei Yao, Yehua Shen, Xiaoyuan Feng, Zhongmin Wang\",\"doi\":\"10.1007/s00330-023-10325-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>To explore whether differences in diffusional kurtosis imaging (DKI) between therapy-naïve high-grade gliomas (HGGs) and low-grade gliomas (LGGs) are related to the cellularity and/or the nuclear-to-cytoplasmic (N/C) ratio.</p><p><strong>Methods: </strong>We analyzed 44 and 40 diffuse glioma samples that were pathologically confirmed as HGGs and IDH1-mutant LGGs, respectively. The DKI parameters included kurtosis metrics (mean kurtosis [MK], axial kurtosis [K<sub>//</sub>], and radial kurtosis [K<sub>⊥</sub>]), and the diffusional metrics (fractional anisotropy [FA], mean diffusion [MD], axial diffusion [λ<sub>//</sub>], and radial diffusion [λ<sub>⊥</sub>]). The cellularity and the N/C ratio were compared within LGGs and HGGs using the Mann-Whitney U test (significant level, p < 0.007 [0.05/7]); Bonferroni correction). Spearman's correlation analysis was used to calculate the correlation coefficients among DKI metrics, cellularity, and the N/C ratio at a significant level of p = 0.05.</p><p><strong>Results: </strong>Excluding FA, all DKI metrics showed significant differences between HGGs and LGGs (all p ≤ 0.001). The N/C ratio of HGGs was significantly higher than that of LGGs; however, differences in cellularity were not significant between the two glioma groups (p = 0.525). Similarly, excluding FA, all DKI metrics were significantly correlated with the N/C ratio in LGGs, with correlation coefficients of - 0.365 (MD), - 0.313 (λ<sub>//</sub>), - 0.376 (λ<sub>⊥</sub>), 0.859 (MK), 0.772 (K<sub>//</sub>), and 0.842 (K<sub>//</sub>). There was a non-significant correlation between any DKI parameters and the cellularity in LGGs. Additionally, the cellularity and N/C ratios in HGGs did not correlate with any DKI metrics.</p><p><strong>Conclusions: </strong>DKI differentiate LGGs from HGGs associated with their different N/C ratios.</p><p><strong>Clinical relevance statement: </strong>This study shows that DKI differentiates LGGs from HGGs may correlated with their different N/C ratios, this could provide a possible histopathological mechanism about why DKI can DKI differentiate LGGs from HGGs.</p><p><strong>Key points: </strong>• Excluding FA, all DKI metrics showed a significant difference between high-grade gliomas and IDH1-mutant low-grade gliomas. • The nuclear-to-cytoplasm ratios in high-grade gliomas were significantly more extensive than that in IDH1-mutant low-grade gliomas, but not the cellularity. • Significant associations were seen between DKI measures and the N/C ratio; a non-significant correlation was noted between any DKI metric and cellularity in glioma specimens.</p>\",\"PeriodicalId\":12076,\"journal\":{\"name\":\"European Radiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00330-023-10325-8\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00330-023-10325-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
DKI can distinguish high-grade gliomas from IDH1-mutant low-grade gliomas and correlate with their different nuclear-to-cytoplasm ratio: a localized biopsy-based study.
Objectives: To explore whether differences in diffusional kurtosis imaging (DKI) between therapy-naïve high-grade gliomas (HGGs) and low-grade gliomas (LGGs) are related to the cellularity and/or the nuclear-to-cytoplasmic (N/C) ratio.
Methods: We analyzed 44 and 40 diffuse glioma samples that were pathologically confirmed as HGGs and IDH1-mutant LGGs, respectively. The DKI parameters included kurtosis metrics (mean kurtosis [MK], axial kurtosis [K//], and radial kurtosis [K⊥]), and the diffusional metrics (fractional anisotropy [FA], mean diffusion [MD], axial diffusion [λ//], and radial diffusion [λ⊥]). The cellularity and the N/C ratio were compared within LGGs and HGGs using the Mann-Whitney U test (significant level, p < 0.007 [0.05/7]); Bonferroni correction). Spearman's correlation analysis was used to calculate the correlation coefficients among DKI metrics, cellularity, and the N/C ratio at a significant level of p = 0.05.
Results: Excluding FA, all DKI metrics showed significant differences between HGGs and LGGs (all p ≤ 0.001). The N/C ratio of HGGs was significantly higher than that of LGGs; however, differences in cellularity were not significant between the two glioma groups (p = 0.525). Similarly, excluding FA, all DKI metrics were significantly correlated with the N/C ratio in LGGs, with correlation coefficients of - 0.365 (MD), - 0.313 (λ//), - 0.376 (λ⊥), 0.859 (MK), 0.772 (K//), and 0.842 (K//). There was a non-significant correlation between any DKI parameters and the cellularity in LGGs. Additionally, the cellularity and N/C ratios in HGGs did not correlate with any DKI metrics.
Conclusions: DKI differentiate LGGs from HGGs associated with their different N/C ratios.
Clinical relevance statement: This study shows that DKI differentiates LGGs from HGGs may correlated with their different N/C ratios, this could provide a possible histopathological mechanism about why DKI can DKI differentiate LGGs from HGGs.
Key points: • Excluding FA, all DKI metrics showed a significant difference between high-grade gliomas and IDH1-mutant low-grade gliomas. • The nuclear-to-cytoplasm ratios in high-grade gliomas were significantly more extensive than that in IDH1-mutant low-grade gliomas, but not the cellularity. • Significant associations were seen between DKI measures and the N/C ratio; a non-significant correlation was noted between any DKI metric and cellularity in glioma specimens.
期刊介绍:
European Radiology (ER) continuously updates scientific knowledge in radiology by publication of strong original articles and state-of-the-art reviews written by leading radiologists. A well balanced combination of review articles, original papers, short communications from European radiological congresses and information on society matters makes ER an indispensable source for current information in this field.
This is the Journal of the European Society of Radiology, and the official journal of a number of societies.
From 2004-2008 supplements to European Radiology were published under its companion, European Radiology Supplements, ISSN 1613-3749.