Denosumab通过依赖自噬通路的p62下调诱导骨巨细胞瘤间质细胞凋亡。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Xianwei Chen, Fan Ye, Hao He, Gong Chen, Zhifu Chen, En Ye, Bingjan He, Yuqi Yang, Jing Zhang
{"title":"Denosumab通过依赖自噬通路的p62下调诱导骨巨细胞瘤间质细胞凋亡。","authors":"Xianwei Chen, Fan Ye, Hao He, Gong Chen, Zhifu Chen, En Ye, Bingjan He, Yuqi Yang, Jing Zhang","doi":"10.2174/0115680096265253231022185008","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>As the only humanized monoclonal antibody against receptor activator of nuclear factor-κB ligand (RANKL) for giant cell tumour of bone (GCTB) therapy, denosumab has limited antitumour effect on neoplastic stromal cells. Nevertheless, its mechanism of action has not yet been clarified. A previous study has revealed that p62 may play an important role in the antitumour activity of denosumab.</p><p><strong>Objective: </strong>The study aimed to investigate if the mechanism by which denosumab inhibits GCTB neoplastic stromal cells growth is via p62 modulation and other related mechanisms.</p><p><strong>Methods: </strong>p62 expression before and after denosumab therapy was analysed by RT‒qPCR, western blot, ELISA, and immunohistochemical assays. Two primary neoplastic stromal cells were isolated from fresh GCTB tumour tissue (L cell) and metastatic tissue (M cell). Cell proliferation, migration, apoptosis, and autophagy were investigated in p62 knockdown neoplastic stromal cells transfected by short hairpin RNA lentivirus <i>in vitro</i>. Tumor growth was evaluated in the chick chorioallantoic membrane model <i>in vivo</i>.</p><p><strong>Results: </strong>p62 expression was found to be downregulated following denosumab therapy. The patients with a decrease in p62 expression had lower recurrence-free survival rates. The proliferation of M cells was not inhibited by denosumab therapy, but it was restored by p62 knockdown. Moreover, p62 knockdown inhibited tumour growth <i>in vivo</i>. Denosumab induced M cell apoptosis and arrested the cell cycle at the G1/G0 transition and these effects were also enhanced by p62 knockdown. Autophagic flux assays revealed p62 modulation to be dependent on autophagy following denosumab incubation.</p><p><strong>Conclusion: </strong>Denosumab induced neoplastic stromal cells apoptosis <i>via</i> p62 downregulation dependent on autophagy pathway. The combination of p62 and RANKL knockdown might be a better strategy than RANKL knockdown alone for GCTB targeted therapy.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Denosumab Induces Neoplastic Stromal Cell Apoptosis <i>Via</i> p62 Downregulation Dependent on Autophagy Pathway in Giant Cell Tumour of Bone.\",\"authors\":\"Xianwei Chen, Fan Ye, Hao He, Gong Chen, Zhifu Chen, En Ye, Bingjan He, Yuqi Yang, Jing Zhang\",\"doi\":\"10.2174/0115680096265253231022185008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>As the only humanized monoclonal antibody against receptor activator of nuclear factor-κB ligand (RANKL) for giant cell tumour of bone (GCTB) therapy, denosumab has limited antitumour effect on neoplastic stromal cells. Nevertheless, its mechanism of action has not yet been clarified. A previous study has revealed that p62 may play an important role in the antitumour activity of denosumab.</p><p><strong>Objective: </strong>The study aimed to investigate if the mechanism by which denosumab inhibits GCTB neoplastic stromal cells growth is via p62 modulation and other related mechanisms.</p><p><strong>Methods: </strong>p62 expression before and after denosumab therapy was analysed by RT‒qPCR, western blot, ELISA, and immunohistochemical assays. Two primary neoplastic stromal cells were isolated from fresh GCTB tumour tissue (L cell) and metastatic tissue (M cell). Cell proliferation, migration, apoptosis, and autophagy were investigated in p62 knockdown neoplastic stromal cells transfected by short hairpin RNA lentivirus <i>in vitro</i>. Tumor growth was evaluated in the chick chorioallantoic membrane model <i>in vivo</i>.</p><p><strong>Results: </strong>p62 expression was found to be downregulated following denosumab therapy. The patients with a decrease in p62 expression had lower recurrence-free survival rates. The proliferation of M cells was not inhibited by denosumab therapy, but it was restored by p62 knockdown. Moreover, p62 knockdown inhibited tumour growth <i>in vivo</i>. Denosumab induced M cell apoptosis and arrested the cell cycle at the G1/G0 transition and these effects were also enhanced by p62 knockdown. Autophagic flux assays revealed p62 modulation to be dependent on autophagy following denosumab incubation.</p><p><strong>Conclusion: </strong>Denosumab induced neoplastic stromal cells apoptosis <i>via</i> p62 downregulation dependent on autophagy pathway. The combination of p62 and RANKL knockdown might be a better strategy than RANKL knockdown alone for GCTB targeted therapy.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115680096265253231022185008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115680096265253231022185008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

背景:denosumab作为治疗骨巨细胞瘤(GCTB)的唯一人源抗核因子-κB配体受体激活剂(RANKL)单克隆抗体,对肿瘤间质细胞的抗肿瘤作用有限。然而,其作用机制尚未明确。先前的一项研究表明p62可能在denosumab的抗肿瘤活性中发挥重要作用。目的:探讨denosumab抑制GCTB肿瘤基质细胞生长的机制是否通过p62调控等相关机制。方法:采用RT-qPCR、western blot、ELISA、免疫组化等方法分析地诺单抗治疗前后p62的表达。从新鲜的GCTB肿瘤组织(L细胞)和转移组织(M细胞)中分离出两个原发肿瘤基质细胞。用短发夹RNA慢病毒转染p62敲低肿瘤基质细胞,研究细胞增殖、迁移、凋亡和自噬。在鸡绒毛膜尿囊膜模型中观察肿瘤的生长情况。结果:经地诺单抗治疗后,p62表达下调。p62表达降低的患者无复发生存率较低。denosumab治疗未抑制M细胞的增殖,但敲低p62可恢复M细胞的增殖。此外,p62敲低抑制肿瘤在体内的生长。Denosumab诱导M细胞凋亡,并在G1/G0过渡阶段阻滞细胞周期,p62敲低也增强了这些作用。自噬通量测定显示,在denosumab孵育后,p62的调节依赖于自噬。结论:Denosumab通过自噬途径下调p62诱导肿瘤间质细胞凋亡。在GCTB靶向治疗中,p62和RANKL敲低联合可能是比单独敲低RANKL更好的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Denosumab Induces Neoplastic Stromal Cell Apoptosis Via p62 Downregulation Dependent on Autophagy Pathway in Giant Cell Tumour of Bone.

Background: As the only humanized monoclonal antibody against receptor activator of nuclear factor-κB ligand (RANKL) for giant cell tumour of bone (GCTB) therapy, denosumab has limited antitumour effect on neoplastic stromal cells. Nevertheless, its mechanism of action has not yet been clarified. A previous study has revealed that p62 may play an important role in the antitumour activity of denosumab.

Objective: The study aimed to investigate if the mechanism by which denosumab inhibits GCTB neoplastic stromal cells growth is via p62 modulation and other related mechanisms.

Methods: p62 expression before and after denosumab therapy was analysed by RT‒qPCR, western blot, ELISA, and immunohistochemical assays. Two primary neoplastic stromal cells were isolated from fresh GCTB tumour tissue (L cell) and metastatic tissue (M cell). Cell proliferation, migration, apoptosis, and autophagy were investigated in p62 knockdown neoplastic stromal cells transfected by short hairpin RNA lentivirus in vitro. Tumor growth was evaluated in the chick chorioallantoic membrane model in vivo.

Results: p62 expression was found to be downregulated following denosumab therapy. The patients with a decrease in p62 expression had lower recurrence-free survival rates. The proliferation of M cells was not inhibited by denosumab therapy, but it was restored by p62 knockdown. Moreover, p62 knockdown inhibited tumour growth in vivo. Denosumab induced M cell apoptosis and arrested the cell cycle at the G1/G0 transition and these effects were also enhanced by p62 knockdown. Autophagic flux assays revealed p62 modulation to be dependent on autophagy following denosumab incubation.

Conclusion: Denosumab induced neoplastic stromal cells apoptosis via p62 downregulation dependent on autophagy pathway. The combination of p62 and RANKL knockdown might be a better strategy than RANKL knockdown alone for GCTB targeted therapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信