Katarzyna Wieczorek-Szukala, Monika Markiewicz, Anna Walczewska, Emilia Zgorzynska
{"title":"二十二碳六烯酸(DHA)通过ATF3转录因子减少脂多糖诱导的炎症反应并刺激小胶质细胞Src/Syk信号依赖性吞噬。","authors":"Katarzyna Wieczorek-Szukala, Monika Markiewicz, Anna Walczewska, Emilia Zgorzynska","doi":"10.33594/000000668","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/aims: </strong>Microglial cells play a crucial role in the development of neuroinflammation in response to harmful stimuli, such as infection, ischemia or injury. Their chronic activation, however, is associated with a progression of neurodegenerative diseases. Therefore, looking for potential factors limiting microglial activation, the effect of docosahexaenoic acid (DHA) on the inflammatory response and TREM2-dependent phagocytic activity in microglia was investigated.</p><p><strong>Methods: </strong>In LPS-induced primary microglia preincubated with DHA, or without preincubation the expression of ATF3 and TREM2 genes and TREM2, Syk, Akt proteins were determined by RT-PCR and WB, respectively. Cell viability was assayed by MTT and cytokine and chemokine expression was determined by the Proteome Profiler assay. Moreover, the phagocytic activity of microglia was assayed using immunofluorescence.</p><p><strong>Results: </strong>We found that DHA significantly increased the expression of ATF3 , and decreased the levels of CINC-1, CINC-2αβ, CINC-3 chemokines, IL-1α and IL-1β cytokines, and ICAM-1 adhesion protein. Additionally, preincubation of microglia with DHA resulted in increased Src/Syk kinases activation associated with increased phagocytic microglia activity.</p><p><strong>Conclusion: </strong>These findings indicate that DHA efficiently inhibits ATF3-dependent release of proinflammatory mediators and enhances phagocytic activity of microglia. The study provides a new mechanism of DHA action in reactive microglia, which may help limit neuronal damage caused by the pro-inflammatory milieu in the brain.</p>","PeriodicalId":9845,"journal":{"name":"Cellular Physiology and Biochemistry","volume":"57 6","pages":"411-425"},"PeriodicalIF":2.5000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Docosahexaenoic Acid (DHA) Reduces LPS-Induced Inflammatory Response Via ATF3 Transcription Factor and Stimulates Src/Syk Signaling-Dependent Phagocytosis in Microglia.\",\"authors\":\"Katarzyna Wieczorek-Szukala, Monika Markiewicz, Anna Walczewska, Emilia Zgorzynska\",\"doi\":\"10.33594/000000668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background/aims: </strong>Microglial cells play a crucial role in the development of neuroinflammation in response to harmful stimuli, such as infection, ischemia or injury. Their chronic activation, however, is associated with a progression of neurodegenerative diseases. Therefore, looking for potential factors limiting microglial activation, the effect of docosahexaenoic acid (DHA) on the inflammatory response and TREM2-dependent phagocytic activity in microglia was investigated.</p><p><strong>Methods: </strong>In LPS-induced primary microglia preincubated with DHA, or without preincubation the expression of ATF3 and TREM2 genes and TREM2, Syk, Akt proteins were determined by RT-PCR and WB, respectively. Cell viability was assayed by MTT and cytokine and chemokine expression was determined by the Proteome Profiler assay. Moreover, the phagocytic activity of microglia was assayed using immunofluorescence.</p><p><strong>Results: </strong>We found that DHA significantly increased the expression of ATF3 , and decreased the levels of CINC-1, CINC-2αβ, CINC-3 chemokines, IL-1α and IL-1β cytokines, and ICAM-1 adhesion protein. Additionally, preincubation of microglia with DHA resulted in increased Src/Syk kinases activation associated with increased phagocytic microglia activity.</p><p><strong>Conclusion: </strong>These findings indicate that DHA efficiently inhibits ATF3-dependent release of proinflammatory mediators and enhances phagocytic activity of microglia. The study provides a new mechanism of DHA action in reactive microglia, which may help limit neuronal damage caused by the pro-inflammatory milieu in the brain.</p>\",\"PeriodicalId\":9845,\"journal\":{\"name\":\"Cellular Physiology and Biochemistry\",\"volume\":\"57 6\",\"pages\":\"411-425\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular Physiology and Biochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33594/000000668\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Physiology and Biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33594/000000668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Docosahexaenoic Acid (DHA) Reduces LPS-Induced Inflammatory Response Via ATF3 Transcription Factor and Stimulates Src/Syk Signaling-Dependent Phagocytosis in Microglia.
Background/aims: Microglial cells play a crucial role in the development of neuroinflammation in response to harmful stimuli, such as infection, ischemia or injury. Their chronic activation, however, is associated with a progression of neurodegenerative diseases. Therefore, looking for potential factors limiting microglial activation, the effect of docosahexaenoic acid (DHA) on the inflammatory response and TREM2-dependent phagocytic activity in microglia was investigated.
Methods: In LPS-induced primary microglia preincubated with DHA, or without preincubation the expression of ATF3 and TREM2 genes and TREM2, Syk, Akt proteins were determined by RT-PCR and WB, respectively. Cell viability was assayed by MTT and cytokine and chemokine expression was determined by the Proteome Profiler assay. Moreover, the phagocytic activity of microglia was assayed using immunofluorescence.
Results: We found that DHA significantly increased the expression of ATF3 , and decreased the levels of CINC-1, CINC-2αβ, CINC-3 chemokines, IL-1α and IL-1β cytokines, and ICAM-1 adhesion protein. Additionally, preincubation of microglia with DHA resulted in increased Src/Syk kinases activation associated with increased phagocytic microglia activity.
Conclusion: These findings indicate that DHA efficiently inhibits ATF3-dependent release of proinflammatory mediators and enhances phagocytic activity of microglia. The study provides a new mechanism of DHA action in reactive microglia, which may help limit neuronal damage caused by the pro-inflammatory milieu in the brain.
期刊介绍:
Cellular Physiology and Biochemistry is a multidisciplinary scientific forum dedicated to advancing the frontiers of basic cellular research. It addresses scientists from both the physiological and biochemical disciplines as well as related fields such as genetics, molecular biology, pathophysiology, pathobiochemistry and cellular toxicology & pharmacology. Original papers and reviews on the mechanisms of intracellular transmission, cellular metabolism, cell growth, differentiation and death, ion channels and carriers, and the maintenance, regulation and disturbances of cell volume are presented. Appearing monthly under peer review, Cellular Physiology and Biochemistry takes an active role in the concerted international effort to unravel the mechanisms of cellular function.