{"title":"分子磁学中的镧系磷酸盐和磷酸盐。","authors":"Junaid Ali, Pawan Kumar, Vadapalli Chandrasekhar","doi":"10.1002/asia.202300812","DOIUrl":null,"url":null,"abstract":"<p>Phosphonate and phosphate ligands have historically received less attention when compared to the widely prevalent carboxylate ligand system. Phosphonates possess multiple donating sites, often leading to the formation of larger aggregates with limited solubility. Conversely, the P−O bond within phosphates is highly susceptible to hydrolysis, resulting in the precipitation of insoluble compounds, particularly when interacting with lanthanide metal ions. However, over the past few decades, various synthetic approaches have emerged for the preparation and characterization of lanthanide complexes involving both phosphonate and phosphate ligands. Consequently, researchers have delved into exploring the magnetic properties of these complexes, such as their potential as single molecule magnets (SMMs) and their ability to exhibit a magnetocaloric effect (MCE). This review will encompass an examination of the crystal structures and magnetic characteristics of lanthanide complexes featuring phosphonate and phosphate ligands.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":"19 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lanthanide Phosphonates and Phosphates in Molecular Magnetism\",\"authors\":\"Junaid Ali, Pawan Kumar, Vadapalli Chandrasekhar\",\"doi\":\"10.1002/asia.202300812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Phosphonate and phosphate ligands have historically received less attention when compared to the widely prevalent carboxylate ligand system. Phosphonates possess multiple donating sites, often leading to the formation of larger aggregates with limited solubility. Conversely, the P−O bond within phosphates is highly susceptible to hydrolysis, resulting in the precipitation of insoluble compounds, particularly when interacting with lanthanide metal ions. However, over the past few decades, various synthetic approaches have emerged for the preparation and characterization of lanthanide complexes involving both phosphonate and phosphate ligands. Consequently, researchers have delved into exploring the magnetic properties of these complexes, such as their potential as single molecule magnets (SMMs) and their ability to exhibit a magnetocaloric effect (MCE). This review will encompass an examination of the crystal structures and magnetic characteristics of lanthanide complexes featuring phosphonate and phosphate ligands.</p>\",\"PeriodicalId\":145,\"journal\":{\"name\":\"Chemistry - An Asian Journal\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry - An Asian Journal\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/asia.202300812\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asia.202300812","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Lanthanide Phosphonates and Phosphates in Molecular Magnetism
Phosphonate and phosphate ligands have historically received less attention when compared to the widely prevalent carboxylate ligand system. Phosphonates possess multiple donating sites, often leading to the formation of larger aggregates with limited solubility. Conversely, the P−O bond within phosphates is highly susceptible to hydrolysis, resulting in the precipitation of insoluble compounds, particularly when interacting with lanthanide metal ions. However, over the past few decades, various synthetic approaches have emerged for the preparation and characterization of lanthanide complexes involving both phosphonate and phosphate ligands. Consequently, researchers have delved into exploring the magnetic properties of these complexes, such as their potential as single molecule magnets (SMMs) and their ability to exhibit a magnetocaloric effect (MCE). This review will encompass an examination of the crystal structures and magnetic characteristics of lanthanide complexes featuring phosphonate and phosphate ligands.
期刊介绍:
Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics.
Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews.
A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal.
Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).