BXD品系小鼠16号染色体上与年龄相关的听力保护位点。

IF 3 4区 医学 Q2 NEUROSCIENCES
Qing Yin Zheng, Lihong Kui, Fuyi Xu, Tihua Zheng, Bo Li, Melinda McCarty, Zehua Sun, Aizheng Zhang, Luying Liu, Athena Starlard-Davenport, Ruben Stepanyan, Bo Hua Hu, Lu Lu
{"title":"BXD品系小鼠16号染色体上与年龄相关的听力保护位点。","authors":"Qing Yin Zheng,&nbsp;Lihong Kui,&nbsp;Fuyi Xu,&nbsp;Tihua Zheng,&nbsp;Bo Li,&nbsp;Melinda McCarty,&nbsp;Zehua Sun,&nbsp;Aizheng Zhang,&nbsp;Luying Liu,&nbsp;Athena Starlard-Davenport,&nbsp;Ruben Stepanyan,&nbsp;Bo Hua Hu,&nbsp;Lu Lu","doi":"10.1155/2020/8889264","DOIUrl":null,"url":null,"abstract":"<p><p>Inbred mouse models are widely used to study age-related hearing loss (AHL). Many genes associated with AHL have been mapped in a variety of strains. However, little is known about gene variants that have the converse function-protective genes that confer strong resistance to hearing loss. Previously, we reported that C57BL/6J (B6) and DBA/2J (D2) strains share a common hearing loss allele in <i>Cdh23</i>. The cadherin 23 (<i>Cdh23</i>) gene is a key contributor to early-onset hearing loss in humans. In this study, we tested hearing across a large family of 54 BXD strains generated from B6 to D2 crosses. Five of 54 strains maintain the normal threshold (20 dB SPL) even at 2 years old-an age at which both parental strains are essentially deaf. Further analyses revealed an age-related hearing protection (<i>ahp</i>) locus on chromosome 16 (Chr 16) at 57~76 Mb with a maximum LOD of 5.7. A small number of BXD strains at 2 years with good hearing correspond roughly to the percentage of humans who have good hearing at 90 years old. Further studies to define candidate genes in the <i>ahp</i> locus and related molecular mechanisms involved in age-related resilience or resistance to AHL are warranted.</p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2020 ","pages":"8889264"},"PeriodicalIF":3.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2020/8889264","citationCount":"5","resultStr":"{\"title\":\"An Age-Related Hearing Protection Locus on Chromosome 16 of BXD Strain Mice.\",\"authors\":\"Qing Yin Zheng,&nbsp;Lihong Kui,&nbsp;Fuyi Xu,&nbsp;Tihua Zheng,&nbsp;Bo Li,&nbsp;Melinda McCarty,&nbsp;Zehua Sun,&nbsp;Aizheng Zhang,&nbsp;Luying Liu,&nbsp;Athena Starlard-Davenport,&nbsp;Ruben Stepanyan,&nbsp;Bo Hua Hu,&nbsp;Lu Lu\",\"doi\":\"10.1155/2020/8889264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Inbred mouse models are widely used to study age-related hearing loss (AHL). Many genes associated with AHL have been mapped in a variety of strains. However, little is known about gene variants that have the converse function-protective genes that confer strong resistance to hearing loss. Previously, we reported that C57BL/6J (B6) and DBA/2J (D2) strains share a common hearing loss allele in <i>Cdh23</i>. The cadherin 23 (<i>Cdh23</i>) gene is a key contributor to early-onset hearing loss in humans. In this study, we tested hearing across a large family of 54 BXD strains generated from B6 to D2 crosses. Five of 54 strains maintain the normal threshold (20 dB SPL) even at 2 years old-an age at which both parental strains are essentially deaf. Further analyses revealed an age-related hearing protection (<i>ahp</i>) locus on chromosome 16 (Chr 16) at 57~76 Mb with a maximum LOD of 5.7. A small number of BXD strains at 2 years with good hearing correspond roughly to the percentage of humans who have good hearing at 90 years old. Further studies to define candidate genes in the <i>ahp</i> locus and related molecular mechanisms involved in age-related resilience or resistance to AHL are warranted.</p>\",\"PeriodicalId\":51299,\"journal\":{\"name\":\"Neural Plasticity\",\"volume\":\"2020 \",\"pages\":\"8889264\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2020/8889264\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Plasticity\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1155/2020/8889264\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Plasticity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2020/8889264","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 5

摘要

近交系小鼠模型被广泛用于研究年龄相关性听力损失(AHL)。许多与AHL相关的基因已在各种菌株中被定位。然而,人们对具有相反功能的基因变体知之甚少,这些基因具有对听力损失的强大抵抗力。此前,我们报道了C57BL/6J (B6)和DBA/2J (D2)菌株在Cdh23中具有共同的听力损失等位基因。钙粘蛋白23 (Cdh23)基因是人类早发性听力损失的关键因素。在这项研究中,我们测试了由B6到D2杂交产生的54个BXD菌株的听力。54株中有5株甚至在2岁时仍保持正常阈值(20 dB SPL),而在2岁时,两株亲本基本上都是聋子。进一步分析发现,16号染色体(Chr 16)上有一个年龄相关的听力保护(ahp)位点,位于57~76 Mb,最大LOD为5.7。少数2岁时听力良好的BXD菌株大致相当于90岁时听力良好的人的百分比。进一步研究确定ahp位点的候选基因和与年龄相关的AHL恢复力或抗性相关的分子机制是必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An Age-Related Hearing Protection Locus on Chromosome 16 of BXD Strain Mice.

An Age-Related Hearing Protection Locus on Chromosome 16 of BXD Strain Mice.

An Age-Related Hearing Protection Locus on Chromosome 16 of BXD Strain Mice.

An Age-Related Hearing Protection Locus on Chromosome 16 of BXD Strain Mice.

Inbred mouse models are widely used to study age-related hearing loss (AHL). Many genes associated with AHL have been mapped in a variety of strains. However, little is known about gene variants that have the converse function-protective genes that confer strong resistance to hearing loss. Previously, we reported that C57BL/6J (B6) and DBA/2J (D2) strains share a common hearing loss allele in Cdh23. The cadherin 23 (Cdh23) gene is a key contributor to early-onset hearing loss in humans. In this study, we tested hearing across a large family of 54 BXD strains generated from B6 to D2 crosses. Five of 54 strains maintain the normal threshold (20 dB SPL) even at 2 years old-an age at which both parental strains are essentially deaf. Further analyses revealed an age-related hearing protection (ahp) locus on chromosome 16 (Chr 16) at 57~76 Mb with a maximum LOD of 5.7. A small number of BXD strains at 2 years with good hearing correspond roughly to the percentage of humans who have good hearing at 90 years old. Further studies to define candidate genes in the ahp locus and related molecular mechanisms involved in age-related resilience or resistance to AHL are warranted.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Plasticity
Neural Plasticity NEUROSCIENCES-
CiteScore
6.80
自引率
0.00%
发文量
77
审稿时长
16 weeks
期刊介绍: Neural Plasticity is an international, interdisciplinary journal dedicated to the publication of articles related to all aspects of neural plasticity, with special emphasis on its functional significance as reflected in behavior and in psychopathology. Neural Plasticity publishes research and review articles from the entire range of relevant disciplines, including basic neuroscience, behavioral neuroscience, cognitive neuroscience, biological psychology, and biological psychiatry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信