研究数据驱动方法在宇宙模型中提取物理参数的适用性

IF 1.9 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
K.Y. Kim, H.W. Lee
{"title":"研究数据驱动方法在宇宙模型中提取物理参数的适用性","authors":"K.Y. Kim,&nbsp;H.W. Lee","doi":"10.1016/j.ascom.2023.100762","DOIUrl":null,"url":null,"abstract":"<div><p>Recent cosmological observations have reached a level of precision that enables the determination and statistical analysis of cosmological parameters with increased accuracy. Despite the significant progress in observational data, our current understanding is still insufficient to fully elucidate the origins of dark energy and dark matter. Addressing the complexities of the observational data may necessitate the development of more sophisticated data analysis techniques or the formulation of new theoretical models. The estimation of some cosmological parameters exhibits variations depending on the chosen physical model, even when utilizing the same observational data. In order to overcome model-dependence, alternative methods such as machine learning techniques based solely on observed data are being explored. However, it is crucial to acknowledge that while this approach may provide insights into the underlying physical laws, it also carries the risk of generating entirely unphysical interpretations.</p><p>The primary objective of this article is to identify the most appropriate data-driven method for extracting physical parameters in cosmological models, with a specific focus on determining the values of two critical parameters: the Hubble constant (<span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>) and the density parameter for dark energy (<span><math><msubsup><mrow><mi>Ω</mi></mrow><mrow><mi>Λ</mi></mrow><mrow><mn>0</mn></mrow></msubsup></math></span>). Our research findings demonstrate a rigorous comparison between the results derived exclusively from observational data and those predicted by the theoretical <span><math><mi>ΛCDM</mi></math></span> (Lambda Cold Dark Matter) model. Through this comparative analysis, we have successfully reaffirmed the effectiveness of the <span><math><mi>ΛCDM</mi></math></span> model in accurately describing the current observed universe.</p></div>","PeriodicalId":48757,"journal":{"name":"Astronomy and Computing","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating the suitability of data-driven methods for extracting physical parameters in cosmological models\",\"authors\":\"K.Y. Kim,&nbsp;H.W. Lee\",\"doi\":\"10.1016/j.ascom.2023.100762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recent cosmological observations have reached a level of precision that enables the determination and statistical analysis of cosmological parameters with increased accuracy. Despite the significant progress in observational data, our current understanding is still insufficient to fully elucidate the origins of dark energy and dark matter. Addressing the complexities of the observational data may necessitate the development of more sophisticated data analysis techniques or the formulation of new theoretical models. The estimation of some cosmological parameters exhibits variations depending on the chosen physical model, even when utilizing the same observational data. In order to overcome model-dependence, alternative methods such as machine learning techniques based solely on observed data are being explored. However, it is crucial to acknowledge that while this approach may provide insights into the underlying physical laws, it also carries the risk of generating entirely unphysical interpretations.</p><p>The primary objective of this article is to identify the most appropriate data-driven method for extracting physical parameters in cosmological models, with a specific focus on determining the values of two critical parameters: the Hubble constant (<span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>) and the density parameter for dark energy (<span><math><msubsup><mrow><mi>Ω</mi></mrow><mrow><mi>Λ</mi></mrow><mrow><mn>0</mn></mrow></msubsup></math></span>). Our research findings demonstrate a rigorous comparison between the results derived exclusively from observational data and those predicted by the theoretical <span><math><mi>ΛCDM</mi></math></span> (Lambda Cold Dark Matter) model. Through this comparative analysis, we have successfully reaffirmed the effectiveness of the <span><math><mi>ΛCDM</mi></math></span> model in accurately describing the current observed universe.</p></div>\",\"PeriodicalId\":48757,\"journal\":{\"name\":\"Astronomy and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astronomy and Computing\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221313372300077X\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy and Computing","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221313372300077X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

最近的宇宙学观测已经达到了一定的精度,使宇宙参数的测定和统计分析能够更加精确。尽管观测数据取得了重大进展,但我们目前的理解仍然不足以充分阐明暗能量和暗物质的起源。解决观测数据的复杂性可能需要发展更复杂的数据分析技术或制定新的理论模型。某些宇宙学参数的估计根据所选择的物理模型而有所不同,即使在使用相同的观测数据时也是如此。为了克服模型依赖,人们正在探索替代方法,例如仅基于观察数据的机器学习技术。然而,重要的是要承认,尽管这种方法可能提供对潜在物理定律的见解,但它也有产生完全非物理解释的风险。本文的主要目标是确定最合适的数据驱动方法来提取宇宙学模型中的物理参数,特别关注确定两个关键参数的值:哈勃常数(H0)和暗能量的密度参数(ΩΛ0)。我们的研究结果证明了完全由观测数据得出的结果与理论ΛCDM (Lambda冷暗物质)模型预测的结果之间的严格比较。通过这种比较分析,我们成功地重申了ΛCDM模型在准确描述当前观测到的宇宙方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigating the suitability of data-driven methods for extracting physical parameters in cosmological models

Recent cosmological observations have reached a level of precision that enables the determination and statistical analysis of cosmological parameters with increased accuracy. Despite the significant progress in observational data, our current understanding is still insufficient to fully elucidate the origins of dark energy and dark matter. Addressing the complexities of the observational data may necessitate the development of more sophisticated data analysis techniques or the formulation of new theoretical models. The estimation of some cosmological parameters exhibits variations depending on the chosen physical model, even when utilizing the same observational data. In order to overcome model-dependence, alternative methods such as machine learning techniques based solely on observed data are being explored. However, it is crucial to acknowledge that while this approach may provide insights into the underlying physical laws, it also carries the risk of generating entirely unphysical interpretations.

The primary objective of this article is to identify the most appropriate data-driven method for extracting physical parameters in cosmological models, with a specific focus on determining the values of two critical parameters: the Hubble constant (H0) and the density parameter for dark energy (ΩΛ0). Our research findings demonstrate a rigorous comparison between the results derived exclusively from observational data and those predicted by the theoretical ΛCDM (Lambda Cold Dark Matter) model. Through this comparative analysis, we have successfully reaffirmed the effectiveness of the ΛCDM model in accurately describing the current observed universe.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astronomy and Computing
Astronomy and Computing ASTRONOMY & ASTROPHYSICSCOMPUTER SCIENCE,-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.10
自引率
8.00%
发文量
67
期刊介绍: Astronomy and Computing is a peer-reviewed journal that focuses on the broad area between astronomy, computer science and information technology. The journal aims to publish the work of scientists and (software) engineers in all aspects of astronomical computing, including the collection, analysis, reduction, visualisation, preservation and dissemination of data, and the development of astronomical software and simulations. The journal covers applications for academic computer science techniques to astronomy, as well as novel applications of information technologies within astronomy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信