Chen Deng , Xueqin Lv , Jianghua Li , Yanfeng Liu , Guocheng Du , Long Liu
{"title":"谷氨酸棒状杆菌DNA双链无断裂碱基编辑工具的开发及其基因组编辑和代谢工程","authors":"Chen Deng , Xueqin Lv , Jianghua Li , Yanfeng Liu , Guocheng Du , Long Liu","doi":"10.1016/j.mec.2020.e00135","DOIUrl":null,"url":null,"abstract":"<div><p>As a traditional amino acid producing bacterium, <em>Corynebacterium glutamicum</em> is a platform strain for production of various fine chemicals. Based on the CRISPR (Clustered regularly interspaced short palindromic repeats)-Cas9 system, gene editing tools that enable base conversion in the genome of <em>C. glutamicum</em> have been developed. However, some problems such as genomic instability caused by DNA double-strand break (DSB) and off-target effects need to be solved. In this study, a DSB-free single nucleotide genome editing system was developed by construction of a bi-directional base conversion tool TadA-dCas9-AID. This system includes cytosine base editors (CBEs): activation-induced cytidine deaminase (AID) and adenine deaminase (ABEs): tRNA adenosine deaminase (TadA), which can specifically target the gene through a 20-nt single guide RNA (sgRNA) and achieve the base conversion of C-T, C-G and A-G in the 28-bp editing window upstream of protospacer adjacent motif. Finally, as a proof-of-concept demonstration, the system was used to construct a mutant library of <em>zwf</em> gene in <em>C. glutamicum</em> S9114 genome to improve the production of a typical nutraceutical <em>N</em>-acetylglucosamine (GlcNAc). The GlcNAc titer of the mutant strain K293R was increased by 31.9% to 9.1 g/L in shake flask. Here, the developed bases conversion tool TadA-dCas9-AID does not need DNA double-strand break and homologous template, and is effective for genome editing and metabolic engineering in <em>C. glutamicum</em>.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mec.2020.e00135","citationCount":"10","resultStr":"{\"title\":\"Development of a DNA double-strand break-free base editing tool in Corynebacterium glutamicum for genome editing and metabolic engineering\",\"authors\":\"Chen Deng , Xueqin Lv , Jianghua Li , Yanfeng Liu , Guocheng Du , Long Liu\",\"doi\":\"10.1016/j.mec.2020.e00135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As a traditional amino acid producing bacterium, <em>Corynebacterium glutamicum</em> is a platform strain for production of various fine chemicals. Based on the CRISPR (Clustered regularly interspaced short palindromic repeats)-Cas9 system, gene editing tools that enable base conversion in the genome of <em>C. glutamicum</em> have been developed. However, some problems such as genomic instability caused by DNA double-strand break (DSB) and off-target effects need to be solved. In this study, a DSB-free single nucleotide genome editing system was developed by construction of a bi-directional base conversion tool TadA-dCas9-AID. This system includes cytosine base editors (CBEs): activation-induced cytidine deaminase (AID) and adenine deaminase (ABEs): tRNA adenosine deaminase (TadA), which can specifically target the gene through a 20-nt single guide RNA (sgRNA) and achieve the base conversion of C-T, C-G and A-G in the 28-bp editing window upstream of protospacer adjacent motif. Finally, as a proof-of-concept demonstration, the system was used to construct a mutant library of <em>zwf</em> gene in <em>C. glutamicum</em> S9114 genome to improve the production of a typical nutraceutical <em>N</em>-acetylglucosamine (GlcNAc). The GlcNAc titer of the mutant strain K293R was increased by 31.9% to 9.1 g/L in shake flask. Here, the developed bases conversion tool TadA-dCas9-AID does not need DNA double-strand break and homologous template, and is effective for genome editing and metabolic engineering in <em>C. glutamicum</em>.</p></div>\",\"PeriodicalId\":18695,\"journal\":{\"name\":\"Metabolic Engineering Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.mec.2020.e00135\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolic Engineering Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214030120300158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic Engineering Communications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214030120300158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Development of a DNA double-strand break-free base editing tool in Corynebacterium glutamicum for genome editing and metabolic engineering
As a traditional amino acid producing bacterium, Corynebacterium glutamicum is a platform strain for production of various fine chemicals. Based on the CRISPR (Clustered regularly interspaced short palindromic repeats)-Cas9 system, gene editing tools that enable base conversion in the genome of C. glutamicum have been developed. However, some problems such as genomic instability caused by DNA double-strand break (DSB) and off-target effects need to be solved. In this study, a DSB-free single nucleotide genome editing system was developed by construction of a bi-directional base conversion tool TadA-dCas9-AID. This system includes cytosine base editors (CBEs): activation-induced cytidine deaminase (AID) and adenine deaminase (ABEs): tRNA adenosine deaminase (TadA), which can specifically target the gene through a 20-nt single guide RNA (sgRNA) and achieve the base conversion of C-T, C-G and A-G in the 28-bp editing window upstream of protospacer adjacent motif. Finally, as a proof-of-concept demonstration, the system was used to construct a mutant library of zwf gene in C. glutamicum S9114 genome to improve the production of a typical nutraceutical N-acetylglucosamine (GlcNAc). The GlcNAc titer of the mutant strain K293R was increased by 31.9% to 9.1 g/L in shake flask. Here, the developed bases conversion tool TadA-dCas9-AID does not need DNA double-strand break and homologous template, and is effective for genome editing and metabolic engineering in C. glutamicum.
期刊介绍:
Metabolic Engineering Communications, a companion title to Metabolic Engineering (MBE), is devoted to publishing original research in the areas of metabolic engineering, synthetic biology, computational biology and systems biology for problems related to metabolism and the engineering of metabolism for the production of fuels, chemicals, and pharmaceuticals. The journal will carry articles on the design, construction, and analysis of biological systems ranging from pathway components to biological complexes and genomes (including genomic, analytical and bioinformatics methods) in suitable host cells to allow them to produce novel compounds of industrial and medical interest. Demonstrations of regulatory designs and synthetic circuits that alter the performance of biochemical pathways and cellular processes will also be presented. Metabolic Engineering Communications complements MBE by publishing articles that are either shorter than those published in the full journal, or which describe key elements of larger metabolic engineering efforts.