{"title":"实时自动检测老年人的手势在家庭和临床设置。","authors":"Guan Huang, Son N Tran, Quan Bai, Jane Alty","doi":"10.1007/s00521-022-08090-8","DOIUrl":null,"url":null,"abstract":"<p><p>There is an urgent need, accelerated by the COVID-19 pandemic, for methods that allow clinicians and neuroscientists to remotely evaluate hand movements. This would help detect and monitor degenerative brain disorders that are particularly prevalent in older adults. With the wide accessibility of computer cameras, a vision-based real-time hand gesture detection method would facilitate online assessments in home and clinical settings. However, motion blur is one of the most challenging problems in the fast-moving hands data collection. The objective of this study was to develop a computer vision-based method that accurately detects older adults' hand gestures using video data collected in real-life settings. We invited adults over 50 years old to complete validated hand movement tests (fast finger tapping and hand opening-closing) at home or in clinic. Data were collected without researcher supervision via a website programme using standard laptop and desktop cameras. We processed and labelled images, split the data into training, validation and testing, respectively, and then analysed how well different network structures detected hand gestures. We recruited 1,900 adults (age range 50-90 years) as part of the TAS Test project and developed UTAS7k-a new dataset of 7071 hand gesture images, split 4:1 into clear: motion-blurred images. Our new network, RGRNet, achieved 0.782 mean average precision (mAP) on clear images, outperforming the state-of-the-art network structure (YOLOV5-P6, mAP 0.776), and mAP 0.771 on blurred images. A new robust real-time automated network that detects static gestures from a single camera, RGRNet, and a new database comprising the largest range of individual hands, UTAS7k, both show strong potential for medical and research applications.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s00521-022-08090-8.</p>","PeriodicalId":49766,"journal":{"name":"Neural Computing & Applications","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9741488/pdf/","citationCount":"1","resultStr":"{\"title\":\"Real-time automated detection of older adults' hand gestures in home and clinical settings.\",\"authors\":\"Guan Huang, Son N Tran, Quan Bai, Jane Alty\",\"doi\":\"10.1007/s00521-022-08090-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>There is an urgent need, accelerated by the COVID-19 pandemic, for methods that allow clinicians and neuroscientists to remotely evaluate hand movements. This would help detect and monitor degenerative brain disorders that are particularly prevalent in older adults. With the wide accessibility of computer cameras, a vision-based real-time hand gesture detection method would facilitate online assessments in home and clinical settings. However, motion blur is one of the most challenging problems in the fast-moving hands data collection. The objective of this study was to develop a computer vision-based method that accurately detects older adults' hand gestures using video data collected in real-life settings. We invited adults over 50 years old to complete validated hand movement tests (fast finger tapping and hand opening-closing) at home or in clinic. Data were collected without researcher supervision via a website programme using standard laptop and desktop cameras. We processed and labelled images, split the data into training, validation and testing, respectively, and then analysed how well different network structures detected hand gestures. We recruited 1,900 adults (age range 50-90 years) as part of the TAS Test project and developed UTAS7k-a new dataset of 7071 hand gesture images, split 4:1 into clear: motion-blurred images. Our new network, RGRNet, achieved 0.782 mean average precision (mAP) on clear images, outperforming the state-of-the-art network structure (YOLOV5-P6, mAP 0.776), and mAP 0.771 on blurred images. A new robust real-time automated network that detects static gestures from a single camera, RGRNet, and a new database comprising the largest range of individual hands, UTAS7k, both show strong potential for medical and research applications.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s00521-022-08090-8.</p>\",\"PeriodicalId\":49766,\"journal\":{\"name\":\"Neural Computing & Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9741488/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Computing & Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00521-022-08090-8\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computing & Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00521-022-08090-8","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Real-time automated detection of older adults' hand gestures in home and clinical settings.
There is an urgent need, accelerated by the COVID-19 pandemic, for methods that allow clinicians and neuroscientists to remotely evaluate hand movements. This would help detect and monitor degenerative brain disorders that are particularly prevalent in older adults. With the wide accessibility of computer cameras, a vision-based real-time hand gesture detection method would facilitate online assessments in home and clinical settings. However, motion blur is one of the most challenging problems in the fast-moving hands data collection. The objective of this study was to develop a computer vision-based method that accurately detects older adults' hand gestures using video data collected in real-life settings. We invited adults over 50 years old to complete validated hand movement tests (fast finger tapping and hand opening-closing) at home or in clinic. Data were collected without researcher supervision via a website programme using standard laptop and desktop cameras. We processed and labelled images, split the data into training, validation and testing, respectively, and then analysed how well different network structures detected hand gestures. We recruited 1,900 adults (age range 50-90 years) as part of the TAS Test project and developed UTAS7k-a new dataset of 7071 hand gesture images, split 4:1 into clear: motion-blurred images. Our new network, RGRNet, achieved 0.782 mean average precision (mAP) on clear images, outperforming the state-of-the-art network structure (YOLOV5-P6, mAP 0.776), and mAP 0.771 on blurred images. A new robust real-time automated network that detects static gestures from a single camera, RGRNet, and a new database comprising the largest range of individual hands, UTAS7k, both show strong potential for medical and research applications.
Supplementary information: The online version contains supplementary material available at 10.1007/s00521-022-08090-8.
期刊介绍:
Neural Computing & Applications is an international journal which publishes original research and other information in the field of practical applications of neural computing and related techniques such as genetic algorithms, fuzzy logic and neuro-fuzzy systems.
All items relevant to building practical systems are within its scope, including but not limited to:
-adaptive computing-
algorithms-
applicable neural networks theory-
applied statistics-
architectures-
artificial intelligence-
benchmarks-
case histories of innovative applications-
fuzzy logic-
genetic algorithms-
hardware implementations-
hybrid intelligent systems-
intelligent agents-
intelligent control systems-
intelligent diagnostics-
intelligent forecasting-
machine learning-
neural networks-
neuro-fuzzy systems-
pattern recognition-
performance measures-
self-learning systems-
software simulations-
supervised and unsupervised learning methods-
system engineering and integration.
Featured contributions fall into several categories: Original Articles, Review Articles, Book Reviews and Announcements.