椭圆偏振和XPS能量损失的杂化:SiGe, HfON和MoOx薄膜的鲁棒带隙和宽带光学常数的测定

IF 2.6 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Théo Levert , Alter Zakhtser , Julien Duval , Chloé Raguenez , Stéphane Verdier , Delphine Le Cunff , Jean-Hervé Tortai , Bernard Pelissier
{"title":"椭圆偏振和XPS能量损失的杂化:SiGe, HfON和MoOx薄膜的鲁棒带隙和宽带光学常数的测定","authors":"Théo Levert ,&nbsp;Alter Zakhtser ,&nbsp;Julien Duval ,&nbsp;Chloé Raguenez ,&nbsp;Stéphane Verdier ,&nbsp;Delphine Le Cunff ,&nbsp;Jean-Hervé Tortai ,&nbsp;Bernard Pelissier","doi":"10.1016/j.mee.2023.112117","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we compare the robustness of optical constants and optical band gap determination of three different materials: SiGe, N-doped HfO<sub>2</sub> and MoO<sub>x</sub><span><span>, using the combination of two techniques: spectroscopic ellipsometry, and </span>energy loss signal (ELS) of X-ray photoelectron spectroscopy (XPS). The determination of such physical properties is achieved through the hybridization of the two techniques based on multiple Tauc-Lorentz model, applied on the whole energy range of measurement.</span></p><p>Such use of hybridized data demonstrates a new robust method to determine the band gap of the studied materials, together with the optical indices (refractive index and extinction coefficient) on a wide energy range (up to 40 eV). This method provides an extension of determination of the relevant physical quantities compared to each technique on their own.</p><p>Moreover, this algorithm is tested on limit conditions, where the energy ranges of measurement of the two respective techniques presented no overlap. Yet the use of a unique physical model still allows us to calculate the different physical quantities even on the energy range where no measurement is performed, validating the semi-predictive nature of the hybrid technique. Additional measurements under different experimental configurations validate the extended scope of such hybrid technique.</p></div>","PeriodicalId":18557,"journal":{"name":"Microelectronic Engineering","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybridization of ellipsometry and XPS energy loss: Robust band gap and broadband optical constants determination of SiGe, HfON and MoOx thin films\",\"authors\":\"Théo Levert ,&nbsp;Alter Zakhtser ,&nbsp;Julien Duval ,&nbsp;Chloé Raguenez ,&nbsp;Stéphane Verdier ,&nbsp;Delphine Le Cunff ,&nbsp;Jean-Hervé Tortai ,&nbsp;Bernard Pelissier\",\"doi\":\"10.1016/j.mee.2023.112117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we compare the robustness of optical constants and optical band gap determination of three different materials: SiGe, N-doped HfO<sub>2</sub> and MoO<sub>x</sub><span><span>, using the combination of two techniques: spectroscopic ellipsometry, and </span>energy loss signal (ELS) of X-ray photoelectron spectroscopy (XPS). The determination of such physical properties is achieved through the hybridization of the two techniques based on multiple Tauc-Lorentz model, applied on the whole energy range of measurement.</span></p><p>Such use of hybridized data demonstrates a new robust method to determine the band gap of the studied materials, together with the optical indices (refractive index and extinction coefficient) on a wide energy range (up to 40 eV). This method provides an extension of determination of the relevant physical quantities compared to each technique on their own.</p><p>Moreover, this algorithm is tested on limit conditions, where the energy ranges of measurement of the two respective techniques presented no overlap. Yet the use of a unique physical model still allows us to calculate the different physical quantities even on the energy range where no measurement is performed, validating the semi-predictive nature of the hybrid technique. Additional measurements under different experimental configurations validate the extended scope of such hybrid technique.</p></div>\",\"PeriodicalId\":18557,\"journal\":{\"name\":\"Microelectronic Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microelectronic Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016793172300182X\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016793172300182X","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们比较了三种不同材料:SiGe, n掺杂HfO2和MoOx的光学常数和光学带隙测定的鲁棒性,采用光谱椭偏法和x射线光电子能谱(XPS)的能量损失信号(ELS)两种技术的组合。这种物理性质的确定是通过基于多重陶克-洛伦兹模型的两种技术的杂交来实现的,应用于整个测量能量范围。这种混合数据的使用证明了一种新的鲁棒方法来确定所研究材料的带隙,以及宽能量范围(高达40 eV)的光学指数(折射率和消光系数)。与各自的技术相比,该方法提供了相关物理量测定的扩展。此外,在极限条件下对该算法进行了测试,在极限条件下,两种技术的测量能量范围不存在重叠。然而,即使在没有进行测量的能量范围内,使用独特的物理模型仍然可以计算不同的物理量,从而验证了混合技术的半预测性质。在不同实验配置下的额外测量验证了这种混合技术的扩展范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hybridization of ellipsometry and XPS energy loss: Robust band gap and broadband optical constants determination of SiGe, HfON and MoOx thin films

Hybridization of ellipsometry and XPS energy loss: Robust band gap and broadband optical constants determination of SiGe, HfON and MoOx thin films

In this study, we compare the robustness of optical constants and optical band gap determination of three different materials: SiGe, N-doped HfO2 and MoOx, using the combination of two techniques: spectroscopic ellipsometry, and energy loss signal (ELS) of X-ray photoelectron spectroscopy (XPS). The determination of such physical properties is achieved through the hybridization of the two techniques based on multiple Tauc-Lorentz model, applied on the whole energy range of measurement.

Such use of hybridized data demonstrates a new robust method to determine the band gap of the studied materials, together with the optical indices (refractive index and extinction coefficient) on a wide energy range (up to 40 eV). This method provides an extension of determination of the relevant physical quantities compared to each technique on their own.

Moreover, this algorithm is tested on limit conditions, where the energy ranges of measurement of the two respective techniques presented no overlap. Yet the use of a unique physical model still allows us to calculate the different physical quantities even on the energy range where no measurement is performed, validating the semi-predictive nature of the hybrid technique. Additional measurements under different experimental configurations validate the extended scope of such hybrid technique.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microelectronic Engineering
Microelectronic Engineering 工程技术-工程:电子与电气
CiteScore
5.30
自引率
4.30%
发文量
131
审稿时长
29 days
期刊介绍: Microelectronic Engineering is the premier nanoprocessing, and nanotechnology journal focusing on fabrication of electronic, photonic, bioelectronic, electromechanic and fluidic devices and systems, and their applications in the broad areas of electronics, photonics, energy, life sciences, and environment. It covers also the expanding interdisciplinary field of "more than Moore" and "beyond Moore" integrated nanoelectronics / photonics and micro-/nano-/bio-systems. Through its unique mixture of peer-reviewed articles, reviews, accelerated publications, short and Technical notes, and the latest research news on key developments, Microelectronic Engineering provides comprehensive coverage of this exciting, interdisciplinary and dynamic new field for researchers in academia and professionals in industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信