Sian F. Henley , Stefano Cozzi , François Fripiat , Delphine Lannuzel , Daiki Nomura , David N. Thomas , Klaus M. Meiners , Martin Vancoppenolle , Kevin Arrigo , Jacqueline Stefels , Maria van Leeuwe , Sebastien Moreau , Elizabeth M. Jones , Agneta Fransson , Melissa Chierici , Bruno Delille
{"title":"南极陆地海冰的大量营养物质生物地球化学:来自环极数据汇编的见解","authors":"Sian F. Henley , Stefano Cozzi , François Fripiat , Delphine Lannuzel , Daiki Nomura , David N. Thomas , Klaus M. Meiners , Martin Vancoppenolle , Kevin Arrigo , Jacqueline Stefels , Maria van Leeuwe , Sebastien Moreau , Elizabeth M. Jones , Agneta Fransson , Melissa Chierici , Bruno Delille","doi":"10.1016/j.marchem.2023.104324","DOIUrl":null,"url":null,"abstract":"<div><p>Antarctic sea ice plays an important role in Southern Ocean biogeochemistry and mediating Earth's climate system. Yet our understanding of biogeochemical cycling in sea ice is limited by the availability of relevant data over sufficient temporal and spatial scales. Here we present a new publicly available compilation of macronutrient concentration data from Antarctic land-fast sea ice, covering the full seasonal cycle using datasets from around Antarctica, as well as a smaller dataset of macronutrient concentrations in adjacent seawater. We show a strong seasonal cycle whereby nutrient concentrations are high during autumn and winter, due to supply from underlying surface waters, and then are utilised in spring and summer by mixed ice algal communities consisting of diatoms and non-siliceous species. Our data indicate some degree of nutrient limitation of ice algal primary production, with silicon limitation likely being most prevalent, although uncertainties remain around the affinities of sea-ice algae for each nutrient. Remineralisation of organic matter and nutrient recycling drive substantial accumulations of inorganic nitrogen, phosphate and to a lesser extent silicic acid in some ice cores to concentrations far in excess of those in surface waters. Nutrient supply to fast ice is enhanced by brine convection, platelet ice accumulation and incorporation into the ice matrix, and under-ice tidal currents, whilst nutrient adsorption to sea-ice surfaces, formation of biofilms, and abiotic mineral precipitation and dissolution can also influence fast-ice nutrient cycling. Concentrations of nitrate, ammonium and silicic acid were generally higher in fast ice than reported for Antarctic pack ice, and this may support the typically observed higher algal biomass in fast-ice environments.</p></div>","PeriodicalId":18219,"journal":{"name":"Marine Chemistry","volume":"257 ","pages":"Article 104324"},"PeriodicalIF":3.0000,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304420323001202/pdfft?md5=86b460763e5cd956ca4a110151bb37fb&pid=1-s2.0-S0304420323001202-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Macronutrient biogeochemistry in Antarctic land-fast sea ice: Insights from a circumpolar data compilation\",\"authors\":\"Sian F. Henley , Stefano Cozzi , François Fripiat , Delphine Lannuzel , Daiki Nomura , David N. Thomas , Klaus M. Meiners , Martin Vancoppenolle , Kevin Arrigo , Jacqueline Stefels , Maria van Leeuwe , Sebastien Moreau , Elizabeth M. Jones , Agneta Fransson , Melissa Chierici , Bruno Delille\",\"doi\":\"10.1016/j.marchem.2023.104324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Antarctic sea ice plays an important role in Southern Ocean biogeochemistry and mediating Earth's climate system. Yet our understanding of biogeochemical cycling in sea ice is limited by the availability of relevant data over sufficient temporal and spatial scales. Here we present a new publicly available compilation of macronutrient concentration data from Antarctic land-fast sea ice, covering the full seasonal cycle using datasets from around Antarctica, as well as a smaller dataset of macronutrient concentrations in adjacent seawater. We show a strong seasonal cycle whereby nutrient concentrations are high during autumn and winter, due to supply from underlying surface waters, and then are utilised in spring and summer by mixed ice algal communities consisting of diatoms and non-siliceous species. Our data indicate some degree of nutrient limitation of ice algal primary production, with silicon limitation likely being most prevalent, although uncertainties remain around the affinities of sea-ice algae for each nutrient. Remineralisation of organic matter and nutrient recycling drive substantial accumulations of inorganic nitrogen, phosphate and to a lesser extent silicic acid in some ice cores to concentrations far in excess of those in surface waters. Nutrient supply to fast ice is enhanced by brine convection, platelet ice accumulation and incorporation into the ice matrix, and under-ice tidal currents, whilst nutrient adsorption to sea-ice surfaces, formation of biofilms, and abiotic mineral precipitation and dissolution can also influence fast-ice nutrient cycling. Concentrations of nitrate, ammonium and silicic acid were generally higher in fast ice than reported for Antarctic pack ice, and this may support the typically observed higher algal biomass in fast-ice environments.</p></div>\",\"PeriodicalId\":18219,\"journal\":{\"name\":\"Marine Chemistry\",\"volume\":\"257 \",\"pages\":\"Article 104324\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0304420323001202/pdfft?md5=86b460763e5cd956ca4a110151bb37fb&pid=1-s2.0-S0304420323001202-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Chemistry\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304420323001202\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Chemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304420323001202","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Macronutrient biogeochemistry in Antarctic land-fast sea ice: Insights from a circumpolar data compilation
Antarctic sea ice plays an important role in Southern Ocean biogeochemistry and mediating Earth's climate system. Yet our understanding of biogeochemical cycling in sea ice is limited by the availability of relevant data over sufficient temporal and spatial scales. Here we present a new publicly available compilation of macronutrient concentration data from Antarctic land-fast sea ice, covering the full seasonal cycle using datasets from around Antarctica, as well as a smaller dataset of macronutrient concentrations in adjacent seawater. We show a strong seasonal cycle whereby nutrient concentrations are high during autumn and winter, due to supply from underlying surface waters, and then are utilised in spring and summer by mixed ice algal communities consisting of diatoms and non-siliceous species. Our data indicate some degree of nutrient limitation of ice algal primary production, with silicon limitation likely being most prevalent, although uncertainties remain around the affinities of sea-ice algae for each nutrient. Remineralisation of organic matter and nutrient recycling drive substantial accumulations of inorganic nitrogen, phosphate and to a lesser extent silicic acid in some ice cores to concentrations far in excess of those in surface waters. Nutrient supply to fast ice is enhanced by brine convection, platelet ice accumulation and incorporation into the ice matrix, and under-ice tidal currents, whilst nutrient adsorption to sea-ice surfaces, formation of biofilms, and abiotic mineral precipitation and dissolution can also influence fast-ice nutrient cycling. Concentrations of nitrate, ammonium and silicic acid were generally higher in fast ice than reported for Antarctic pack ice, and this may support the typically observed higher algal biomass in fast-ice environments.
期刊介绍:
Marine Chemistry is an international medium for the publication of original studies and occasional reviews in the field of chemistry in the marine environment, with emphasis on the dynamic approach. The journal endeavours to cover all aspects, from chemical processes to theoretical and experimental work, and, by providing a central channel of communication, to speed the flow of information in this relatively new and rapidly expanding discipline.