{"title":"抗糖尿病药物引起的肠道菌群改变的代谢后果","authors":"Venkata Chaithanya , Janardanan Kumar , Kakithakara Vajravelu Leela , Matcha Angelin , Abhishek Satheesan , Ria Murugesan","doi":"10.1016/j.deman.2023.100180","DOIUrl":null,"url":null,"abstract":"<div><p>The mutualistic relationship between human health and gut microbiota has gained growing attention as a result of its far-reaching consequences. Diabetes medications, essential for managing type 2 diabetes, which regulate glucose metabolism, have shown effects that go beyond glycemic control by receiving attention for their possible influence on gut microbiota. Notably, metformin, a cornerstone therapy, has received a lot of attention for its ability to influence the gut microbiota. Metformin administration has been linked to changes in the abundance of specific bacterial taxa, including an uprise in beneficial microbes like <em>Akkermansia muciniphila</em>. These modifications have been linked to increased insulin sensitivity and better metabolic outcomes. Other classes of diabetes drugs, in addition to metformin, have shown potential effects on the gut microbiota. SGLT-2 inhibitors, for example, may contribute to changes in gut microbial communities, which could explain their cardiovascular and metabolic benefits. However, the processes underlying these interactions, are complicated and not entirely understood. Direct interactions between the gut microbiota and drug, changes in intestinal permeability, and modulation of bile acid metabolism are all possible mechanisms. Individual differences and genetic factors complicate the relationship even more. Understanding the intricate interplay between diabetes drugs and gut microbiota holds promise for developing personalized diabetes management approaches. Taking advantage of these interactions could lead to novel therapeutic strategies that improve drug efficacy and overall metabolic health. More studies are required to determine the exact mechanisms underlying these effects and to capitalize on their potential for improved patient outcomes. This review provides a concise overview of the effects of diabetes medications on gut microbiota composition and its importance.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666970623000598/pdfft?md5=a6f9c3f9c66218d87de1a61a5edc4f00&pid=1-s2.0-S2666970623000598-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Metabolic consequences of alterations in gut microbiota induced by antidiabetic medications\",\"authors\":\"Venkata Chaithanya , Janardanan Kumar , Kakithakara Vajravelu Leela , Matcha Angelin , Abhishek Satheesan , Ria Murugesan\",\"doi\":\"10.1016/j.deman.2023.100180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The mutualistic relationship between human health and gut microbiota has gained growing attention as a result of its far-reaching consequences. Diabetes medications, essential for managing type 2 diabetes, which regulate glucose metabolism, have shown effects that go beyond glycemic control by receiving attention for their possible influence on gut microbiota. Notably, metformin, a cornerstone therapy, has received a lot of attention for its ability to influence the gut microbiota. Metformin administration has been linked to changes in the abundance of specific bacterial taxa, including an uprise in beneficial microbes like <em>Akkermansia muciniphila</em>. These modifications have been linked to increased insulin sensitivity and better metabolic outcomes. Other classes of diabetes drugs, in addition to metformin, have shown potential effects on the gut microbiota. SGLT-2 inhibitors, for example, may contribute to changes in gut microbial communities, which could explain their cardiovascular and metabolic benefits. However, the processes underlying these interactions, are complicated and not entirely understood. Direct interactions between the gut microbiota and drug, changes in intestinal permeability, and modulation of bile acid metabolism are all possible mechanisms. Individual differences and genetic factors complicate the relationship even more. Understanding the intricate interplay between diabetes drugs and gut microbiota holds promise for developing personalized diabetes management approaches. Taking advantage of these interactions could lead to novel therapeutic strategies that improve drug efficacy and overall metabolic health. More studies are required to determine the exact mechanisms underlying these effects and to capitalize on their potential for improved patient outcomes. This review provides a concise overview of the effects of diabetes medications on gut microbiota composition and its importance.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666970623000598/pdfft?md5=a6f9c3f9c66218d87de1a61a5edc4f00&pid=1-s2.0-S2666970623000598-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666970623000598\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666970623000598","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Metabolic consequences of alterations in gut microbiota induced by antidiabetic medications
The mutualistic relationship between human health and gut microbiota has gained growing attention as a result of its far-reaching consequences. Diabetes medications, essential for managing type 2 diabetes, which regulate glucose metabolism, have shown effects that go beyond glycemic control by receiving attention for their possible influence on gut microbiota. Notably, metformin, a cornerstone therapy, has received a lot of attention for its ability to influence the gut microbiota. Metformin administration has been linked to changes in the abundance of specific bacterial taxa, including an uprise in beneficial microbes like Akkermansia muciniphila. These modifications have been linked to increased insulin sensitivity and better metabolic outcomes. Other classes of diabetes drugs, in addition to metformin, have shown potential effects on the gut microbiota. SGLT-2 inhibitors, for example, may contribute to changes in gut microbial communities, which could explain their cardiovascular and metabolic benefits. However, the processes underlying these interactions, are complicated and not entirely understood. Direct interactions between the gut microbiota and drug, changes in intestinal permeability, and modulation of bile acid metabolism are all possible mechanisms. Individual differences and genetic factors complicate the relationship even more. Understanding the intricate interplay between diabetes drugs and gut microbiota holds promise for developing personalized diabetes management approaches. Taking advantage of these interactions could lead to novel therapeutic strategies that improve drug efficacy and overall metabolic health. More studies are required to determine the exact mechanisms underlying these effects and to capitalize on their potential for improved patient outcomes. This review provides a concise overview of the effects of diabetes medications on gut microbiota composition and its importance.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.