{"title":"Banach收缩原理在局部凸空间中的新推广及其应用","authors":"Kazimierz Włlodarczyk","doi":"10.1016/S1385-7258(88)80029-5","DOIUrl":null,"url":null,"abstract":"<div><p>In the paper, an important tool from fixed point theory, the Banach contraction principle, is extended to the more general setting where the spaces are Hausdorff locally convex and sequentially complete with calibrations Γ and the maps are not necessarily Γ-continuous. Applications are given for Γ-strictly pseudo-contractive maps.</p></div>","PeriodicalId":100664,"journal":{"name":"Indagationes Mathematicae (Proceedings)","volume":"91 2","pages":"Pages 211-221"},"PeriodicalIF":0.0000,"publicationDate":"1988-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1385-7258(88)80029-5","citationCount":"5","resultStr":"{\"title\":\"New extension of the Banach contraction principle to locally convex spaces and applications\",\"authors\":\"Kazimierz Włlodarczyk\",\"doi\":\"10.1016/S1385-7258(88)80029-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the paper, an important tool from fixed point theory, the Banach contraction principle, is extended to the more general setting where the spaces are Hausdorff locally convex and sequentially complete with calibrations Γ and the maps are not necessarily Γ-continuous. Applications are given for Γ-strictly pseudo-contractive maps.</p></div>\",\"PeriodicalId\":100664,\"journal\":{\"name\":\"Indagationes Mathematicae (Proceedings)\",\"volume\":\"91 2\",\"pages\":\"Pages 211-221\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1385-7258(88)80029-5\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae (Proceedings)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1385725888800295\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae (Proceedings)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1385725888800295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
New extension of the Banach contraction principle to locally convex spaces and applications
In the paper, an important tool from fixed point theory, the Banach contraction principle, is extended to the more general setting where the spaces are Hausdorff locally convex and sequentially complete with calibrations Γ and the maps are not necessarily Γ-continuous. Applications are given for Γ-strictly pseudo-contractive maps.