Kafa Walweel , Elizabeth Cheesman , Peter Molenaar
{"title":"通过更好地理解信号传导,β2AR在治疗心力衰竭方面的潜在益处","authors":"Kafa Walweel , Elizabeth Cheesman , Peter Molenaar","doi":"10.1016/j.cophys.2023.100719","DOIUrl":null,"url":null,"abstract":"<div><p>In the human heart, adrenaline activates the β<sub>2</sub>-adrenoceptor (β<sub>2</sub>AR) to cause powerful increases in contractile force and acceleration of contraction. This is explained by tight coupling of the β<sub>2</sub>AR to the Gsα-protein–cyclic AMP–PKA signaling pathway with phosphorylation of proteins, including the <span>L</span>-type Ca<sup>2+</sup> channel, ryanodine receptor, phospholamban, and sarcomeric proteins troponin I and C-protein. Experimentally, it has been shown that activation of β<sub>2</sub>ARs is arrhythmogenic in the human failing heart. From cell- and animal model-based experiments, there is increased awareness of the broader signaling repertoire of the β<sub>2</sub>AR. The β<sub>2</sub>AR has the ability to couple simultaneously to Gsα- and Giα-proteins and activate β-arrestin signaling pathways. In addition to the orthosteric binding site, modes of conformation stabilization exist through the allosteric binding site and with pepducins. Beneficial effects, including cardioprotection, have been observed, waiting for translation to the human diseased heart and fuelling optimism for advancement of therapeutics for heart disease.</p></div>","PeriodicalId":52156,"journal":{"name":"Current Opinion in Physiology","volume":"36 ","pages":"Article 100719"},"PeriodicalIF":2.5000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468867323000901/pdfft?md5=87123952d72c71737c11eda70520b8b4&pid=1-s2.0-S2468867323000901-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Potential of β2AR for added benefit in treating heart failure through a better understanding of signaling\",\"authors\":\"Kafa Walweel , Elizabeth Cheesman , Peter Molenaar\",\"doi\":\"10.1016/j.cophys.2023.100719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the human heart, adrenaline activates the β<sub>2</sub>-adrenoceptor (β<sub>2</sub>AR) to cause powerful increases in contractile force and acceleration of contraction. This is explained by tight coupling of the β<sub>2</sub>AR to the Gsα-protein–cyclic AMP–PKA signaling pathway with phosphorylation of proteins, including the <span>L</span>-type Ca<sup>2+</sup> channel, ryanodine receptor, phospholamban, and sarcomeric proteins troponin I and C-protein. Experimentally, it has been shown that activation of β<sub>2</sub>ARs is arrhythmogenic in the human failing heart. From cell- and animal model-based experiments, there is increased awareness of the broader signaling repertoire of the β<sub>2</sub>AR. The β<sub>2</sub>AR has the ability to couple simultaneously to Gsα- and Giα-proteins and activate β-arrestin signaling pathways. In addition to the orthosteric binding site, modes of conformation stabilization exist through the allosteric binding site and with pepducins. Beneficial effects, including cardioprotection, have been observed, waiting for translation to the human diseased heart and fuelling optimism for advancement of therapeutics for heart disease.</p></div>\",\"PeriodicalId\":52156,\"journal\":{\"name\":\"Current Opinion in Physiology\",\"volume\":\"36 \",\"pages\":\"Article 100719\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2468867323000901/pdfft?md5=87123952d72c71737c11eda70520b8b4&pid=1-s2.0-S2468867323000901-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468867323000901\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Physiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468867323000901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Potential of β2AR for added benefit in treating heart failure through a better understanding of signaling
In the human heart, adrenaline activates the β2-adrenoceptor (β2AR) to cause powerful increases in contractile force and acceleration of contraction. This is explained by tight coupling of the β2AR to the Gsα-protein–cyclic AMP–PKA signaling pathway with phosphorylation of proteins, including the L-type Ca2+ channel, ryanodine receptor, phospholamban, and sarcomeric proteins troponin I and C-protein. Experimentally, it has been shown that activation of β2ARs is arrhythmogenic in the human failing heart. From cell- and animal model-based experiments, there is increased awareness of the broader signaling repertoire of the β2AR. The β2AR has the ability to couple simultaneously to Gsα- and Giα-proteins and activate β-arrestin signaling pathways. In addition to the orthosteric binding site, modes of conformation stabilization exist through the allosteric binding site and with pepducins. Beneficial effects, including cardioprotection, have been observed, waiting for translation to the human diseased heart and fuelling optimism for advancement of therapeutics for heart disease.