{"title":"激光粉末床熔合的预测过程映射:现有分析解决方案的回顾","authors":"Ankur K. Agrawal , Behzad Rankouhi , Dan J. Thoma","doi":"10.1016/j.cossms.2022.101024","DOIUrl":null,"url":null,"abstract":"<div><p>One of the main challenges in the laser powder bed fusion (LPBF) process is making dense and defect-free components. These porosity defects are dependent upon the melt pool geometry and the processing conditions. Power-velocity (PV) processing maps can aid in visualizing the effects of LPBF processing variables and mapping different defect regimes such as lack-of-fusion, under-melting, balling, and keyholing. This work presents an assessment of existing analytical equations and models that provide an estimate of the melt pool geometry as a function of material properties. The melt pool equations are then combined with defect criteria to provide a quick approximation of the PV processing maps for a variety of materials. Finally, the predictions of these processing maps are compared with experimental data from the literature. The predictive processing maps can be computed quickly and can be coupled with dimensionless numbers and high-throughput (HT) experiments for validation. The present work provides a boundary framework for designing the optimal processing parameters for new metals and alloys based on existing analytical solutions.</p></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"26 6","pages":"Article 101024"},"PeriodicalIF":12.2000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Predictive process mapping for laser powder bed fusion: A review of existing analytical solutions\",\"authors\":\"Ankur K. Agrawal , Behzad Rankouhi , Dan J. Thoma\",\"doi\":\"10.1016/j.cossms.2022.101024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>One of the main challenges in the laser powder bed fusion (LPBF) process is making dense and defect-free components. These porosity defects are dependent upon the melt pool geometry and the processing conditions. Power-velocity (PV) processing maps can aid in visualizing the effects of LPBF processing variables and mapping different defect regimes such as lack-of-fusion, under-melting, balling, and keyholing. This work presents an assessment of existing analytical equations and models that provide an estimate of the melt pool geometry as a function of material properties. The melt pool equations are then combined with defect criteria to provide a quick approximation of the PV processing maps for a variety of materials. Finally, the predictions of these processing maps are compared with experimental data from the literature. The predictive processing maps can be computed quickly and can be coupled with dimensionless numbers and high-throughput (HT) experiments for validation. The present work provides a boundary framework for designing the optimal processing parameters for new metals and alloys based on existing analytical solutions.</p></div>\",\"PeriodicalId\":295,\"journal\":{\"name\":\"Current Opinion in Solid State & Materials Science\",\"volume\":\"26 6\",\"pages\":\"Article 101024\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Solid State & Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359028622000444\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Solid State & Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359028622000444","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Predictive process mapping for laser powder bed fusion: A review of existing analytical solutions
One of the main challenges in the laser powder bed fusion (LPBF) process is making dense and defect-free components. These porosity defects are dependent upon the melt pool geometry and the processing conditions. Power-velocity (PV) processing maps can aid in visualizing the effects of LPBF processing variables and mapping different defect regimes such as lack-of-fusion, under-melting, balling, and keyholing. This work presents an assessment of existing analytical equations and models that provide an estimate of the melt pool geometry as a function of material properties. The melt pool equations are then combined with defect criteria to provide a quick approximation of the PV processing maps for a variety of materials. Finally, the predictions of these processing maps are compared with experimental data from the literature. The predictive processing maps can be computed quickly and can be coupled with dimensionless numbers and high-throughput (HT) experiments for validation. The present work provides a boundary framework for designing the optimal processing parameters for new metals and alloys based on existing analytical solutions.
期刊介绍:
Title: Current Opinion in Solid State & Materials Science
Journal Overview:
Aims to provide a snapshot of the latest research and advances in materials science
Publishes six issues per year, each containing reviews covering exciting and developing areas of materials science
Each issue comprises 2-3 sections of reviews commissioned by international researchers who are experts in their fields
Provides materials scientists with the opportunity to stay informed about current developments in their own and related areas of research
Promotes cross-fertilization of ideas across an increasingly interdisciplinary field