{"title":"纳米颗粒增强美沙拉嗪治疗炎症性肠病","authors":"Rajvanshi Sutaria, Zi Hong Mok","doi":"10.1016/j.pscia.2023.100014","DOIUrl":null,"url":null,"abstract":"<div><p>Inflammatory bowel disease (IBD) is a chronic inflammatory illness that causes ongoing bodily inflammation in the gastrointestinal tract. Drug-targeted delivery of aminosalicylates such as mesalazine at the inflammation sites, to treat ulcerative colitis (UC) and Crohn's disease (CD) has remained a difficulty. Current mesalazine formulations, including tablets, suppositories, and enemas, are typically associated with adverse systemic effects. The use of nanocarriers however has opened the possibility of improved local targeting and pharmacokinetics of loaded mesalazine, based on the new physicochemical properties of the drug vehicle. The innovative nanoencapsulation of mesalazine has demonstrated success in targeting inflammatory regions and treating mild to moderate IBD. The use of nanocarriers, such as lipid-based, polymeric, and inorganic nanocarriers, has demonstrated improved overall solubility, absorption, and bioavailability of mesalazine while minimising the side effects associated with their absorption. This review aims to offer an insight into what is currently known about IBD, and the nanotechnological approaches for the improvement of mesalazine therapy for IBD.</p></div>","PeriodicalId":101012,"journal":{"name":"Pharmaceutical Science Advances","volume":"1 2","pages":"Article 100014"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773216923000120/pdfft?md5=cce2fa28c0ad0031ff5d2920e9448670&pid=1-s2.0-S2773216923000120-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Nanoparticle-enhanced mesalazine therapy for inflammatory bowel disease\",\"authors\":\"Rajvanshi Sutaria, Zi Hong Mok\",\"doi\":\"10.1016/j.pscia.2023.100014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Inflammatory bowel disease (IBD) is a chronic inflammatory illness that causes ongoing bodily inflammation in the gastrointestinal tract. Drug-targeted delivery of aminosalicylates such as mesalazine at the inflammation sites, to treat ulcerative colitis (UC) and Crohn's disease (CD) has remained a difficulty. Current mesalazine formulations, including tablets, suppositories, and enemas, are typically associated with adverse systemic effects. The use of nanocarriers however has opened the possibility of improved local targeting and pharmacokinetics of loaded mesalazine, based on the new physicochemical properties of the drug vehicle. The innovative nanoencapsulation of mesalazine has demonstrated success in targeting inflammatory regions and treating mild to moderate IBD. The use of nanocarriers, such as lipid-based, polymeric, and inorganic nanocarriers, has demonstrated improved overall solubility, absorption, and bioavailability of mesalazine while minimising the side effects associated with their absorption. This review aims to offer an insight into what is currently known about IBD, and the nanotechnological approaches for the improvement of mesalazine therapy for IBD.</p></div>\",\"PeriodicalId\":101012,\"journal\":{\"name\":\"Pharmaceutical Science Advances\",\"volume\":\"1 2\",\"pages\":\"Article 100014\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2773216923000120/pdfft?md5=cce2fa28c0ad0031ff5d2920e9448670&pid=1-s2.0-S2773216923000120-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Science Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773216923000120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Science Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773216923000120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nanoparticle-enhanced mesalazine therapy for inflammatory bowel disease
Inflammatory bowel disease (IBD) is a chronic inflammatory illness that causes ongoing bodily inflammation in the gastrointestinal tract. Drug-targeted delivery of aminosalicylates such as mesalazine at the inflammation sites, to treat ulcerative colitis (UC) and Crohn's disease (CD) has remained a difficulty. Current mesalazine formulations, including tablets, suppositories, and enemas, are typically associated with adverse systemic effects. The use of nanocarriers however has opened the possibility of improved local targeting and pharmacokinetics of loaded mesalazine, based on the new physicochemical properties of the drug vehicle. The innovative nanoencapsulation of mesalazine has demonstrated success in targeting inflammatory regions and treating mild to moderate IBD. The use of nanocarriers, such as lipid-based, polymeric, and inorganic nanocarriers, has demonstrated improved overall solubility, absorption, and bioavailability of mesalazine while minimising the side effects associated with their absorption. This review aims to offer an insight into what is currently known about IBD, and the nanotechnological approaches for the improvement of mesalazine therapy for IBD.