Shawn Miller Jr , Edgar Juarez Lopez , Jessica M.L. Grittner , Brendan J. Dougherty
{"title":"低水平的二氧化碳补充维持异氧血症,揭示大鼠的通气长期促进作用","authors":"Shawn Miller Jr , Edgar Juarez Lopez , Jessica M.L. Grittner , Brendan J. Dougherty","doi":"10.1016/j.resp.2023.104185","DOIUrl":null,"url":null,"abstract":"<div><p>Acute, intermittent hypoxia (AIH) induces ventilatory long-term facilitation (vLTF) in awake, freely behaving rats under poikilocapnic and isocapnic experimental conditions. Establishing pre-clinical methods for vLTF induction that more closely align with successful protocols in humans and anesthetized rats would minimize dissonance in experimental findings and improve translational aspects of vLTF. Here, we tested several levels of low-dose CO<sub>2</sub> supplementation during and after AIH to determine 1) the lowest amount of inspired CO<sub>2</sub> that would maintain isocapnia in rats during a vLTF protocol, and 2) the net impact of supplemental CO<sub>2</sub> on vLTF expression. Rats received one of four levels of inspired CO<sub>2</sub> (0%, 0.5%, 1% or 2%) administered during AIH and for the 60 min following AIH to quantify vLTF. Our findings indicated that 2% inspired CO<sub>2</sub> was sufficient to maintain isocapnia across the AIH protocol and reveal significant vLTF. These findings provide evidence-based support for using 2% supplemental CO<sub>2</sub> during and after AIH when assessing vLTF in rats.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1569904823001738/pdfft?md5=0f56e4a33e227a009bb3e20619e4e658&pid=1-s2.0-S1569904823001738-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Low level CO2 supplementation maintains isocapnia and reveals ventilatory long-term facilitation in rats\",\"authors\":\"Shawn Miller Jr , Edgar Juarez Lopez , Jessica M.L. Grittner , Brendan J. Dougherty\",\"doi\":\"10.1016/j.resp.2023.104185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Acute, intermittent hypoxia (AIH) induces ventilatory long-term facilitation (vLTF) in awake, freely behaving rats under poikilocapnic and isocapnic experimental conditions. Establishing pre-clinical methods for vLTF induction that more closely align with successful protocols in humans and anesthetized rats would minimize dissonance in experimental findings and improve translational aspects of vLTF. Here, we tested several levels of low-dose CO<sub>2</sub> supplementation during and after AIH to determine 1) the lowest amount of inspired CO<sub>2</sub> that would maintain isocapnia in rats during a vLTF protocol, and 2) the net impact of supplemental CO<sub>2</sub> on vLTF expression. Rats received one of four levels of inspired CO<sub>2</sub> (0%, 0.5%, 1% or 2%) administered during AIH and for the 60 min following AIH to quantify vLTF. Our findings indicated that 2% inspired CO<sub>2</sub> was sufficient to maintain isocapnia across the AIH protocol and reveal significant vLTF. These findings provide evidence-based support for using 2% supplemental CO<sub>2</sub> during and after AIH when assessing vLTF in rats.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1569904823001738/pdfft?md5=0f56e4a33e227a009bb3e20619e4e658&pid=1-s2.0-S1569904823001738-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569904823001738\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569904823001738","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Low level CO2 supplementation maintains isocapnia and reveals ventilatory long-term facilitation in rats
Acute, intermittent hypoxia (AIH) induces ventilatory long-term facilitation (vLTF) in awake, freely behaving rats under poikilocapnic and isocapnic experimental conditions. Establishing pre-clinical methods for vLTF induction that more closely align with successful protocols in humans and anesthetized rats would minimize dissonance in experimental findings and improve translational aspects of vLTF. Here, we tested several levels of low-dose CO2 supplementation during and after AIH to determine 1) the lowest amount of inspired CO2 that would maintain isocapnia in rats during a vLTF protocol, and 2) the net impact of supplemental CO2 on vLTF expression. Rats received one of four levels of inspired CO2 (0%, 0.5%, 1% or 2%) administered during AIH and for the 60 min following AIH to quantify vLTF. Our findings indicated that 2% inspired CO2 was sufficient to maintain isocapnia across the AIH protocol and reveal significant vLTF. These findings provide evidence-based support for using 2% supplemental CO2 during and after AIH when assessing vLTF in rats.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.