{"title":"解码染料降解:纺织工业废水的微生物修复","authors":"Soumyajit Das , Lubhan Cherwoo , Ravinder Singh","doi":"10.1016/j.biotno.2023.10.001","DOIUrl":null,"url":null,"abstract":"<div><p>The extensive use of chemical dyes, primarily Azo and anthraquinone dyes, in textiles has resulted in their alarming release into the environment by textile industries. The introduction of heavy metals into these dyes leads to an increase in Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), and water toxicity. Conventional physicochemical methods for treating textile effluents are costly and energy-intensive. Here introduction of new strategies is eminent, microbial bioremediation for the biodegradation and detoxification of these hazardous dyes, possesses as an innovative solution for the existing problem, discussed are specific groups of bacteria, fungi, and algae which could be one of the potential decolorizing agents that could replace the majority of other expensive processes in textile wastewater treatment by using enzymes like peroxidase, laccase, and azoreductase. These enzymes catalyzes chemical reactions that break down the dye molecules into less harmful substances. Additionally, novel strategies and advancements to enhance the effectiveness of these microbes and their products are comprehensively discussed.</p></div>","PeriodicalId":100186,"journal":{"name":"Biotechnology Notes","volume":"4 ","pages":"Pages 64-76"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665906923000065/pdfft?md5=21a407f49cff5a595dbe1b0a2c0c47b0&pid=1-s2.0-S2665906923000065-main.pdf","citationCount":"1","resultStr":"{\"title\":\"Decoding dye degradation: Microbial remediation of textile industry effluents\",\"authors\":\"Soumyajit Das , Lubhan Cherwoo , Ravinder Singh\",\"doi\":\"10.1016/j.biotno.2023.10.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The extensive use of chemical dyes, primarily Azo and anthraquinone dyes, in textiles has resulted in their alarming release into the environment by textile industries. The introduction of heavy metals into these dyes leads to an increase in Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), and water toxicity. Conventional physicochemical methods for treating textile effluents are costly and energy-intensive. Here introduction of new strategies is eminent, microbial bioremediation for the biodegradation and detoxification of these hazardous dyes, possesses as an innovative solution for the existing problem, discussed are specific groups of bacteria, fungi, and algae which could be one of the potential decolorizing agents that could replace the majority of other expensive processes in textile wastewater treatment by using enzymes like peroxidase, laccase, and azoreductase. These enzymes catalyzes chemical reactions that break down the dye molecules into less harmful substances. Additionally, novel strategies and advancements to enhance the effectiveness of these microbes and their products are comprehensively discussed.</p></div>\",\"PeriodicalId\":100186,\"journal\":{\"name\":\"Biotechnology Notes\",\"volume\":\"4 \",\"pages\":\"Pages 64-76\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2665906923000065/pdfft?md5=21a407f49cff5a595dbe1b0a2c0c47b0&pid=1-s2.0-S2665906923000065-main.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Notes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2665906923000065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Notes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665906923000065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Decoding dye degradation: Microbial remediation of textile industry effluents
The extensive use of chemical dyes, primarily Azo and anthraquinone dyes, in textiles has resulted in their alarming release into the environment by textile industries. The introduction of heavy metals into these dyes leads to an increase in Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), and water toxicity. Conventional physicochemical methods for treating textile effluents are costly and energy-intensive. Here introduction of new strategies is eminent, microbial bioremediation for the biodegradation and detoxification of these hazardous dyes, possesses as an innovative solution for the existing problem, discussed are specific groups of bacteria, fungi, and algae which could be one of the potential decolorizing agents that could replace the majority of other expensive processes in textile wastewater treatment by using enzymes like peroxidase, laccase, and azoreductase. These enzymes catalyzes chemical reactions that break down the dye molecules into less harmful substances. Additionally, novel strategies and advancements to enhance the effectiveness of these microbes and their products are comprehensively discussed.