利用结构信息增强均匀背景图像的系统方法

IF 2.5 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
D. Vijayalakshmi , Malaya Kumar Nath
{"title":"利用结构信息增强均匀背景图像的系统方法","authors":"D. Vijayalakshmi ,&nbsp;Malaya Kumar Nath","doi":"10.1016/j.gmod.2023.101206","DOIUrl":null,"url":null,"abstract":"<div><p>Image enhancement is an indispensable pre-processing step for several image processing applications. Mainly, histogram equalization is one of the widespread techniques used by various researchers to improve the image quality by expanding the pixel values to fill the entire dynamic grayscale. It results in the visual artifact, structural information loss near edges due to the information loss (due to many-to-one mapping), and alteration in average luminance to a higher value. This paper proposes an enhancement algorithm based on structural information for homogeneous background images. The intensities are divided into two segments using the median value to preserve the average luminance. Unlike traditional techniques, this algorithm incorporates the spatial locations in the equalization process instead of the number of intensity values occurrences. The occurrences of each intensity concerning their spatial locations are combined using Rènyi entropy to enumerate a discrete function. An adaptive clipping limit is applied to the discrete function to control the enhancement rate. Then histogram equalization is performed on each segment separately, and the equalized segments are integrated to produce an enhanced image. The algorithm’s effectiveness is validated by evaluating the proposed method on CEED, CSIQ, LOL, and TID2013 databases. Experimental results reveal that the proposed method improves the contrast while preserving structural information, detail information, and average luminance. They are quantified by the high value of contrast improvement index, structural similarity index, and discrete entropy, and low value of average mean brightness error values of the proposed method when compared with the methods available in the literature, including deep learning architectures.</p></div>","PeriodicalId":55083,"journal":{"name":"Graphical Models","volume":"130 ","pages":"Article 101206"},"PeriodicalIF":2.5000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S152407032300036X/pdfft?md5=66c749d2624c0d77acd46a4f2037626a&pid=1-s2.0-S152407032300036X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A systematic approach for enhancement of homogeneous background images using structural information\",\"authors\":\"D. Vijayalakshmi ,&nbsp;Malaya Kumar Nath\",\"doi\":\"10.1016/j.gmod.2023.101206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Image enhancement is an indispensable pre-processing step for several image processing applications. Mainly, histogram equalization is one of the widespread techniques used by various researchers to improve the image quality by expanding the pixel values to fill the entire dynamic grayscale. It results in the visual artifact, structural information loss near edges due to the information loss (due to many-to-one mapping), and alteration in average luminance to a higher value. This paper proposes an enhancement algorithm based on structural information for homogeneous background images. The intensities are divided into two segments using the median value to preserve the average luminance. Unlike traditional techniques, this algorithm incorporates the spatial locations in the equalization process instead of the number of intensity values occurrences. The occurrences of each intensity concerning their spatial locations are combined using Rènyi entropy to enumerate a discrete function. An adaptive clipping limit is applied to the discrete function to control the enhancement rate. Then histogram equalization is performed on each segment separately, and the equalized segments are integrated to produce an enhanced image. The algorithm’s effectiveness is validated by evaluating the proposed method on CEED, CSIQ, LOL, and TID2013 databases. Experimental results reveal that the proposed method improves the contrast while preserving structural information, detail information, and average luminance. They are quantified by the high value of contrast improvement index, structural similarity index, and discrete entropy, and low value of average mean brightness error values of the proposed method when compared with the methods available in the literature, including deep learning architectures.</p></div>\",\"PeriodicalId\":55083,\"journal\":{\"name\":\"Graphical Models\",\"volume\":\"130 \",\"pages\":\"Article 101206\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S152407032300036X/pdfft?md5=66c749d2624c0d77acd46a4f2037626a&pid=1-s2.0-S152407032300036X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphical Models\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S152407032300036X\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphical Models","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S152407032300036X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

在许多图像处理应用中,图像增强是必不可少的预处理步骤。直方图均衡化(histogram equalization)是众多研究者广泛使用的技术之一,通过扩展像素值来填充整个动态灰度,从而提高图像质量。它会导致视觉伪影,由于信息丢失(由于多对一映射)而导致的边缘附近的结构信息丢失,以及平均亮度变化到更高的值。提出了一种基于结构信息的均匀背景图像增强算法。使用中值将亮度分成两段,以保持平均亮度。与传统技术不同,该算法在均衡过程中包含空间位置,而不是强度值出现的次数。每个强度与其空间位置相关的出现使用rnyi熵组合以枚举离散函数。对离散函数采用自适应裁剪限制来控制增强率。然后对每一段分别进行直方图均衡化,并将均衡化后的片段进行综合,得到增强图像。通过对CEED、CSIQ、LOL和TID2013数据库的评估,验证了该算法的有效性。实验结果表明,该方法在保留结构信息、细节信息和平均亮度的同时,提高了对比度。与文献中已有的方法(包括深度学习架构)相比,本文方法的对比度改进指数、结构相似性指数和离散熵值较高,平均亮度误差值较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A systematic approach for enhancement of homogeneous background images using structural information

Image enhancement is an indispensable pre-processing step for several image processing applications. Mainly, histogram equalization is one of the widespread techniques used by various researchers to improve the image quality by expanding the pixel values to fill the entire dynamic grayscale. It results in the visual artifact, structural information loss near edges due to the information loss (due to many-to-one mapping), and alteration in average luminance to a higher value. This paper proposes an enhancement algorithm based on structural information for homogeneous background images. The intensities are divided into two segments using the median value to preserve the average luminance. Unlike traditional techniques, this algorithm incorporates the spatial locations in the equalization process instead of the number of intensity values occurrences. The occurrences of each intensity concerning their spatial locations are combined using Rènyi entropy to enumerate a discrete function. An adaptive clipping limit is applied to the discrete function to control the enhancement rate. Then histogram equalization is performed on each segment separately, and the equalized segments are integrated to produce an enhanced image. The algorithm’s effectiveness is validated by evaluating the proposed method on CEED, CSIQ, LOL, and TID2013 databases. Experimental results reveal that the proposed method improves the contrast while preserving structural information, detail information, and average luminance. They are quantified by the high value of contrast improvement index, structural similarity index, and discrete entropy, and low value of average mean brightness error values of the proposed method when compared with the methods available in the literature, including deep learning architectures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Graphical Models
Graphical Models 工程技术-计算机:软件工程
CiteScore
3.60
自引率
5.90%
发文量
15
审稿时长
47 days
期刊介绍: Graphical Models is recognized internationally as a highly rated, top tier journal and is focused on the creation, geometric processing, animation, and visualization of graphical models and on their applications in engineering, science, culture, and entertainment. GMOD provides its readers with thoroughly reviewed and carefully selected papers that disseminate exciting innovations, that teach rigorous theoretical foundations, that propose robust and efficient solutions, or that describe ambitious systems or applications in a variety of topics. We invite papers in five categories: research (contributions of novel theoretical or practical approaches or solutions), survey (opinionated views of the state-of-the-art and challenges in a specific topic), system (the architecture and implementation details of an innovative architecture for a complete system that supports model/animation design, acquisition, analysis, visualization?), application (description of a novel application of know techniques and evaluation of its impact), or lecture (an elegant and inspiring perspective on previously published results that clarifies them and teaches them in a new way). GMOD offers its authors an accelerated review, feedback from experts in the field, immediate online publication of accepted papers, no restriction on color and length (when justified by the content) in the online version, and a broad promotion of published papers. A prestigious group of editors selected from among the premier international researchers in their fields oversees the review process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信