{"title":"海马体-腹内侧前额叶皮层静息状态连接在应激易感性和恢复力中的双刃剑:一项前瞻性研究","authors":"Jingjing Chang , Di Song , Rongjun Yu","doi":"10.1016/j.ynstr.2023.100584","DOIUrl":null,"url":null,"abstract":"<div><p>The hippocampus has long been considered a pivotal region implicated in both stress susceptibility and resilience. A wealth of evidence from animal and human studies underscores the significance of hippocampal functional connectivity with the ventromedial prefrontal cortex (vmPFC) in these stress-related processes. However, there remains a scarcity of research that explores and contrasts the roles of hippocampus-vmPFC connectivity in stress susceptibility and resilience when facing a real-life traumatic event from a prospective standpoint. In the present study, we investigated the contributions of undirected and directed connectivity between the hippocampus and vmPFC to stress susceptibility and resilience within the context of the COVID-19 pandemic. Our findings revealed that the left hippocampus-left vmPFC connectivity prior to the pandemic exhibited a negative correlation with both stress susceptibility and resilience. Specifically, individuals with stronger left hippocampus-left vmPFC connectivity reported experiencing fewer stress-related feelings during the outbreak period of the epidemic but displayed lower levels of stress resilience five months later. Our application of spectral dynamic causal modeling unveiled an additional inhibitory connectivity pathway from the left hippocampus to the left vmPFC in the context of stress susceptibility, which was notably absent in stress resilience. Furthermore, we observed a noteworthy positive association between self-inhibition of the vmPFC and stress susceptibility, with this effect proving substantial enough to predict an individual's susceptibility to stress; conversely, these patterns did not manifest in the realm of stress resilience. These findings enrich our comprehension of stress susceptibility and stress resilience and might have implications for innovative approaches to managing stress-related disorders.</p></div>","PeriodicalId":19125,"journal":{"name":"Neurobiology of Stress","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352289523000723/pdfft?md5=a4883c1c0bdf0cdf5fb0f37358420291&pid=1-s2.0-S2352289523000723-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The double-edged sword of the hippocampus-ventromedial prefrontal cortex resting-state connectivity in stress susceptibility and resilience: A prospective study\",\"authors\":\"Jingjing Chang , Di Song , Rongjun Yu\",\"doi\":\"10.1016/j.ynstr.2023.100584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The hippocampus has long been considered a pivotal region implicated in both stress susceptibility and resilience. A wealth of evidence from animal and human studies underscores the significance of hippocampal functional connectivity with the ventromedial prefrontal cortex (vmPFC) in these stress-related processes. However, there remains a scarcity of research that explores and contrasts the roles of hippocampus-vmPFC connectivity in stress susceptibility and resilience when facing a real-life traumatic event from a prospective standpoint. In the present study, we investigated the contributions of undirected and directed connectivity between the hippocampus and vmPFC to stress susceptibility and resilience within the context of the COVID-19 pandemic. Our findings revealed that the left hippocampus-left vmPFC connectivity prior to the pandemic exhibited a negative correlation with both stress susceptibility and resilience. Specifically, individuals with stronger left hippocampus-left vmPFC connectivity reported experiencing fewer stress-related feelings during the outbreak period of the epidemic but displayed lower levels of stress resilience five months later. Our application of spectral dynamic causal modeling unveiled an additional inhibitory connectivity pathway from the left hippocampus to the left vmPFC in the context of stress susceptibility, which was notably absent in stress resilience. Furthermore, we observed a noteworthy positive association between self-inhibition of the vmPFC and stress susceptibility, with this effect proving substantial enough to predict an individual's susceptibility to stress; conversely, these patterns did not manifest in the realm of stress resilience. These findings enrich our comprehension of stress susceptibility and stress resilience and might have implications for innovative approaches to managing stress-related disorders.</p></div>\",\"PeriodicalId\":19125,\"journal\":{\"name\":\"Neurobiology of Stress\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352289523000723/pdfft?md5=a4883c1c0bdf0cdf5fb0f37358420291&pid=1-s2.0-S2352289523000723-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurobiology of Stress\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352289523000723\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Stress","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352289523000723","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
The double-edged sword of the hippocampus-ventromedial prefrontal cortex resting-state connectivity in stress susceptibility and resilience: A prospective study
The hippocampus has long been considered a pivotal region implicated in both stress susceptibility and resilience. A wealth of evidence from animal and human studies underscores the significance of hippocampal functional connectivity with the ventromedial prefrontal cortex (vmPFC) in these stress-related processes. However, there remains a scarcity of research that explores and contrasts the roles of hippocampus-vmPFC connectivity in stress susceptibility and resilience when facing a real-life traumatic event from a prospective standpoint. In the present study, we investigated the contributions of undirected and directed connectivity between the hippocampus and vmPFC to stress susceptibility and resilience within the context of the COVID-19 pandemic. Our findings revealed that the left hippocampus-left vmPFC connectivity prior to the pandemic exhibited a negative correlation with both stress susceptibility and resilience. Specifically, individuals with stronger left hippocampus-left vmPFC connectivity reported experiencing fewer stress-related feelings during the outbreak period of the epidemic but displayed lower levels of stress resilience five months later. Our application of spectral dynamic causal modeling unveiled an additional inhibitory connectivity pathway from the left hippocampus to the left vmPFC in the context of stress susceptibility, which was notably absent in stress resilience. Furthermore, we observed a noteworthy positive association between self-inhibition of the vmPFC and stress susceptibility, with this effect proving substantial enough to predict an individual's susceptibility to stress; conversely, these patterns did not manifest in the realm of stress resilience. These findings enrich our comprehension of stress susceptibility and stress resilience and might have implications for innovative approaches to managing stress-related disorders.
期刊介绍:
Neurobiology of Stress is a multidisciplinary journal for the publication of original research and review articles on basic, translational and clinical research into stress and related disorders. It will focus on the impact of stress on the brain from cellular to behavioral functions and stress-related neuropsychiatric disorders (such as depression, trauma and anxiety). The translation of basic research findings into real-world applications will be a key aim of the journal.
Basic, translational and clinical research on the following topics as they relate to stress will be covered:
Molecular substrates and cell signaling,
Genetics and epigenetics,
Stress circuitry,
Structural and physiological plasticity,
Developmental Aspects,
Laboratory models of stress,
Neuroinflammation and pathology,
Memory and Cognition,
Motivational Processes,
Fear and Anxiety,
Stress-related neuropsychiatric disorders (including depression, PTSD, substance abuse),
Neuropsychopharmacology.