Basar Caglar , Emin Açıkkalp , Onder Altuntas , Ana I. Palmero-Marrero , Rustem Zairov , David Borge-Diez
{"title":"利用液态有机氢载体储能的太阳能独立系统的烈性评估","authors":"Basar Caglar , Emin Açıkkalp , Onder Altuntas , Ana I. Palmero-Marrero , Rustem Zairov , David Borge-Diez","doi":"10.1016/j.solener.2023.112041","DOIUrl":null,"url":null,"abstract":"<div><p>The integration of energy storage technologies into renewable energy systems has gained increasing attention for continuous supply of the renewable-based enegy. Among different storage alternatives, the use of a Liquid Organic Hydrogen Carrier (LOHC) has a significant potential as a reversible energy carrier for short and long-term energy storage. In this study, the technical and economic performance of an stand-alone renewable energy systems using a LOHC for energy storage have been evaluated by exergy-based methods in addition to simple energy and economic analysis. The analysis of the LOHC-free system was also included to determine the effect of LOHC on the system performance. The system containing phovoltaic (PV) panels, an electrolyzer, a micro gas turbine and hydrogenation/dehydrogenation LOHC units was designed to meet the power, heating and cooling requirement of a residential building. The system modelling and performance evaluation were made by using TRNSYS and EES softwares. Results show that the LOHC-containing system has higher energy and exergy efficiencies and exergoeconomic performance than the LOHC-free system while the latter is economically more feasible than the former due to its low capital investment cost.</p></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"264 ","pages":"Article 112041"},"PeriodicalIF":6.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exergetic assessment of an solar powered stand-alone system using liquid organic hydrogen carrier for energy storage\",\"authors\":\"Basar Caglar , Emin Açıkkalp , Onder Altuntas , Ana I. Palmero-Marrero , Rustem Zairov , David Borge-Diez\",\"doi\":\"10.1016/j.solener.2023.112041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The integration of energy storage technologies into renewable energy systems has gained increasing attention for continuous supply of the renewable-based enegy. Among different storage alternatives, the use of a Liquid Organic Hydrogen Carrier (LOHC) has a significant potential as a reversible energy carrier for short and long-term energy storage. In this study, the technical and economic performance of an stand-alone renewable energy systems using a LOHC for energy storage have been evaluated by exergy-based methods in addition to simple energy and economic analysis. The analysis of the LOHC-free system was also included to determine the effect of LOHC on the system performance. The system containing phovoltaic (PV) panels, an electrolyzer, a micro gas turbine and hydrogenation/dehydrogenation LOHC units was designed to meet the power, heating and cooling requirement of a residential building. The system modelling and performance evaluation were made by using TRNSYS and EES softwares. Results show that the LOHC-containing system has higher energy and exergy efficiencies and exergoeconomic performance than the LOHC-free system while the latter is economically more feasible than the former due to its low capital investment cost.</p></div>\",\"PeriodicalId\":428,\"journal\":{\"name\":\"Solar Energy\",\"volume\":\"264 \",\"pages\":\"Article 112041\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038092X23006758\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X23006758","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Exergetic assessment of an solar powered stand-alone system using liquid organic hydrogen carrier for energy storage
The integration of energy storage technologies into renewable energy systems has gained increasing attention for continuous supply of the renewable-based enegy. Among different storage alternatives, the use of a Liquid Organic Hydrogen Carrier (LOHC) has a significant potential as a reversible energy carrier for short and long-term energy storage. In this study, the technical and economic performance of an stand-alone renewable energy systems using a LOHC for energy storage have been evaluated by exergy-based methods in addition to simple energy and economic analysis. The analysis of the LOHC-free system was also included to determine the effect of LOHC on the system performance. The system containing phovoltaic (PV) panels, an electrolyzer, a micro gas turbine and hydrogenation/dehydrogenation LOHC units was designed to meet the power, heating and cooling requirement of a residential building. The system modelling and performance evaluation were made by using TRNSYS and EES softwares. Results show that the LOHC-containing system has higher energy and exergy efficiencies and exergoeconomic performance than the LOHC-free system while the latter is economically more feasible than the former due to its low capital investment cost.
期刊介绍:
Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass