Wenjie Li , Shitang Ke , Zebin Cai , Chunming Ji , Wenqing Wang , Lishan Wang , Hehe Ren
{"title":"强风作用下大跨度柔性光伏支撑阵失稳机理及失效准则","authors":"Wenjie Li , Shitang Ke , Zebin Cai , Chunming Ji , Wenqing Wang , Lishan Wang , Hehe Ren","doi":"10.1016/j.solener.2023.112000","DOIUrl":null,"url":null,"abstract":"<div><p>Compared with independent flexible PV support, the entire structure force performance and transfer mechanism of inter-row cables and inter-span rods of flexible PV support arrays are more complex, it is easy to have large vibration or even instability failure under strong wind. In this study, the three-span and five-row flexible PV support array of a 66 MW <em>Fishery-PV Complementary</em> demonstration site in the eastern coastal region of China is used as the research object. The rigid body pressure measurement wind tunnel test was designed and carried out, and the wind pressure distribution characteristics of the PV panels surface were analyzed. A three-dimensional explicit dynamics model of the flexible PV support array considering inter-row cables and inter-span rods is established, and the wind-induced dynamic response characteristics and instability processes of the large-span flexible PV support array are effectively simulated. Finally, the instability mechanism of the large-span flexible PV support array is revealed, and the dual failure criteria based on structural deformation and energy increment are proposed. Results demonstrated that the maximum values of displacement and von Mises stress of the large-span flexible PV support array are concentrated in the 1st row of the span in the windward side. The array under 0° and 180° wind direction angles induces local instability and failure at wind speeds of 51 m/s and 46 m/s due to the failure of the 1st row of triangular rods and crossed diagonal rods on the windward side, respectively, and the rods instability mechanisms are Eulerian buckling mechanism and Limit point buckling mechanism, respectively. When the axial compression ratio [<em>Δ</em>] > 0.1 or the strain energy increment [Δ<em>U</em>] > 1.0 × 10<sup>5</sup>J of the instability rod, the structure will be locally destabilized. This paper presents a systematic work around the wind-induced response and instability characteristics of the large-span flexible PV support array, the results are of significance for the engineering application of solar energy generation structures.</p></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"264 ","pages":"Article 112000"},"PeriodicalIF":6.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Instability mechanism and failure criteria of large-span flexible PV support arrays under severe wind\",\"authors\":\"Wenjie Li , Shitang Ke , Zebin Cai , Chunming Ji , Wenqing Wang , Lishan Wang , Hehe Ren\",\"doi\":\"10.1016/j.solener.2023.112000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Compared with independent flexible PV support, the entire structure force performance and transfer mechanism of inter-row cables and inter-span rods of flexible PV support arrays are more complex, it is easy to have large vibration or even instability failure under strong wind. In this study, the three-span and five-row flexible PV support array of a 66 MW <em>Fishery-PV Complementary</em> demonstration site in the eastern coastal region of China is used as the research object. The rigid body pressure measurement wind tunnel test was designed and carried out, and the wind pressure distribution characteristics of the PV panels surface were analyzed. A three-dimensional explicit dynamics model of the flexible PV support array considering inter-row cables and inter-span rods is established, and the wind-induced dynamic response characteristics and instability processes of the large-span flexible PV support array are effectively simulated. Finally, the instability mechanism of the large-span flexible PV support array is revealed, and the dual failure criteria based on structural deformation and energy increment are proposed. Results demonstrated that the maximum values of displacement and von Mises stress of the large-span flexible PV support array are concentrated in the 1st row of the span in the windward side. The array under 0° and 180° wind direction angles induces local instability and failure at wind speeds of 51 m/s and 46 m/s due to the failure of the 1st row of triangular rods and crossed diagonal rods on the windward side, respectively, and the rods instability mechanisms are Eulerian buckling mechanism and Limit point buckling mechanism, respectively. When the axial compression ratio [<em>Δ</em>] > 0.1 or the strain energy increment [Δ<em>U</em>] > 1.0 × 10<sup>5</sup>J of the instability rod, the structure will be locally destabilized. This paper presents a systematic work around the wind-induced response and instability characteristics of the large-span flexible PV support array, the results are of significance for the engineering application of solar energy generation structures.</p></div>\",\"PeriodicalId\":428,\"journal\":{\"name\":\"Solar Energy\",\"volume\":\"264 \",\"pages\":\"Article 112000\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038092X23006345\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X23006345","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Instability mechanism and failure criteria of large-span flexible PV support arrays under severe wind
Compared with independent flexible PV support, the entire structure force performance and transfer mechanism of inter-row cables and inter-span rods of flexible PV support arrays are more complex, it is easy to have large vibration or even instability failure under strong wind. In this study, the three-span and five-row flexible PV support array of a 66 MW Fishery-PV Complementary demonstration site in the eastern coastal region of China is used as the research object. The rigid body pressure measurement wind tunnel test was designed and carried out, and the wind pressure distribution characteristics of the PV panels surface were analyzed. A three-dimensional explicit dynamics model of the flexible PV support array considering inter-row cables and inter-span rods is established, and the wind-induced dynamic response characteristics and instability processes of the large-span flexible PV support array are effectively simulated. Finally, the instability mechanism of the large-span flexible PV support array is revealed, and the dual failure criteria based on structural deformation and energy increment are proposed. Results demonstrated that the maximum values of displacement and von Mises stress of the large-span flexible PV support array are concentrated in the 1st row of the span in the windward side. The array under 0° and 180° wind direction angles induces local instability and failure at wind speeds of 51 m/s and 46 m/s due to the failure of the 1st row of triangular rods and crossed diagonal rods on the windward side, respectively, and the rods instability mechanisms are Eulerian buckling mechanism and Limit point buckling mechanism, respectively. When the axial compression ratio [Δ] > 0.1 or the strain energy increment [ΔU] > 1.0 × 105J of the instability rod, the structure will be locally destabilized. This paper presents a systematic work around the wind-induced response and instability characteristics of the large-span flexible PV support array, the results are of significance for the engineering application of solar energy generation structures.
期刊介绍:
Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass