Francisco J. Aranda, José A. Teruel, Antonio Ortiz
{"title":"糖脂和脂肽生物表面活性剂与模型膜和生物膜相互作用的研究进展","authors":"Francisco J. Aranda, José A. Teruel, Antonio Ortiz","doi":"10.1016/j.cocis.2023.101748","DOIUrl":null,"url":null,"abstract":"<div><p>Microbial biosurfactants have gained interest in the last decades because of their unique characteristics. The variety of chemical structures within these compounds makes them very versatile, with glycolipids and lipopeptides outstanding among the rest. The amphiphilic nature of these compounds makes them to partition into and strongly interact with phospholipid membranes, modifying their structure and function. Thus, much research has been done on the characterization of the interaction of glycolipid and lipopeptide biosurfactants with model and biological membranes. Whereas the studies involving phospholipid model membranes were mostly carried out earlier, most of the recent research has focused on biological membranes, including mammalian and microorganisms' systems. This review presents the recent developments achieved on the interaction of the main glycolipid and lipopeptide biosurfactants with model and biological membranes.</p></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"68 ","pages":"Article 101748"},"PeriodicalIF":7.9000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1359029423000730/pdfft?md5=8674b1a1d044c8a3ae317f71003ec623&pid=1-s2.0-S1359029423000730-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Recent advances on the interaction of glycolipid and lipopeptide biosurfactants with model and biological membranes\",\"authors\":\"Francisco J. Aranda, José A. Teruel, Antonio Ortiz\",\"doi\":\"10.1016/j.cocis.2023.101748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Microbial biosurfactants have gained interest in the last decades because of their unique characteristics. The variety of chemical structures within these compounds makes them very versatile, with glycolipids and lipopeptides outstanding among the rest. The amphiphilic nature of these compounds makes them to partition into and strongly interact with phospholipid membranes, modifying their structure and function. Thus, much research has been done on the characterization of the interaction of glycolipid and lipopeptide biosurfactants with model and biological membranes. Whereas the studies involving phospholipid model membranes were mostly carried out earlier, most of the recent research has focused on biological membranes, including mammalian and microorganisms' systems. This review presents the recent developments achieved on the interaction of the main glycolipid and lipopeptide biosurfactants with model and biological membranes.</p></div>\",\"PeriodicalId\":293,\"journal\":{\"name\":\"Current Opinion in Colloid & Interface Science\",\"volume\":\"68 \",\"pages\":\"Article 101748\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1359029423000730/pdfft?md5=8674b1a1d044c8a3ae317f71003ec623&pid=1-s2.0-S1359029423000730-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Colloid & Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359029423000730\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Colloid & Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359029423000730","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Recent advances on the interaction of glycolipid and lipopeptide biosurfactants with model and biological membranes
Microbial biosurfactants have gained interest in the last decades because of their unique characteristics. The variety of chemical structures within these compounds makes them very versatile, with glycolipids and lipopeptides outstanding among the rest. The amphiphilic nature of these compounds makes them to partition into and strongly interact with phospholipid membranes, modifying their structure and function. Thus, much research has been done on the characterization of the interaction of glycolipid and lipopeptide biosurfactants with model and biological membranes. Whereas the studies involving phospholipid model membranes were mostly carried out earlier, most of the recent research has focused on biological membranes, including mammalian and microorganisms' systems. This review presents the recent developments achieved on the interaction of the main glycolipid and lipopeptide biosurfactants with model and biological membranes.
期刊介绍:
Current Opinion in Colloid and Interface Science (COCIS) is an international journal that focuses on the molecular and nanoscopic aspects of colloidal systems and interfaces in various scientific and technological fields. These include materials science, biologically-relevant systems, energy and environmental technologies, and industrial applications.
Unlike primary journals, COCIS primarily serves as a guide for researchers, helping them navigate through the vast landscape of recently published literature. It critically analyzes the state of the art, identifies bottlenecks and unsolved issues, and proposes future developments.
Moreover, COCIS emphasizes certain areas and papers that are considered particularly interesting and significant by the Editors and Section Editors. Its goal is to provide valuable insights and updates to the research community in these specialized areas.