点阵玻尔兹曼格式的一般四阶Chapman-Enskog展开

IF 2.5 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
François Dubois , Bruce M. Boghosian , Pierre Lallemand
{"title":"点阵玻尔兹曼格式的一般四阶Chapman-Enskog展开","authors":"François Dubois ,&nbsp;Bruce M. Boghosian ,&nbsp;Pierre Lallemand","doi":"10.1016/j.compfluid.2023.106036","DOIUrl":null,"url":null,"abstract":"<div><p><span>In order to derive the equivalent partial differential equations of a </span>lattice<span><span> Boltzmann scheme, the Chapman Enskog expansion is very popular in the lattice Boltzmann community. A main drawback of this approach is the fact that multiscale expansions are used without any clear mathematical signification of the various variables and operators. Independently of this framework, the </span>Taylor expansion method allows to obtain formally the equivalent partial differential equations. The general equivalency of these two approaches remains an open question. In this contribution, we prove that both approaches give identical results with acoustic scaling for a very general family of lattice Boltzmann schemes and up to fourth-order accuracy. Examples with a single scalar conservation illustrate our purpose.</span></p></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"266 ","pages":"Article 106036"},"PeriodicalIF":2.5000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"General fourth-order Chapman–Enskog expansion of lattice Boltzmann schemes\",\"authors\":\"François Dubois ,&nbsp;Bruce M. Boghosian ,&nbsp;Pierre Lallemand\",\"doi\":\"10.1016/j.compfluid.2023.106036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>In order to derive the equivalent partial differential equations of a </span>lattice<span><span> Boltzmann scheme, the Chapman Enskog expansion is very popular in the lattice Boltzmann community. A main drawback of this approach is the fact that multiscale expansions are used without any clear mathematical signification of the various variables and operators. Independently of this framework, the </span>Taylor expansion method allows to obtain formally the equivalent partial differential equations. The general equivalency of these two approaches remains an open question. In this contribution, we prove that both approaches give identical results with acoustic scaling for a very general family of lattice Boltzmann schemes and up to fourth-order accuracy. Examples with a single scalar conservation illustrate our purpose.</span></p></div>\",\"PeriodicalId\":287,\"journal\":{\"name\":\"Computers & Fluids\",\"volume\":\"266 \",\"pages\":\"Article 106036\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S004579302300261X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004579302300261X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

为了推导晶格玻尔兹曼格式的等价偏微分方程,查普曼恩斯科格展开在晶格玻尔兹曼群体中非常流行。这种方法的一个主要缺点是,在使用多尺度展开时,对各种变量和运算符没有任何明确的数学意义。独立于这个框架,泰勒展开法允许形式上得到等价的偏微分方程。这两种方法的一般等效性仍然是一个悬而未决的问题。在这篇文章中,我们证明了两种方法在声学标度下对非常一般的晶格玻尔兹曼格式和高达四阶精度给出了相同的结果。使用单个标量守恒的例子说明了我们的目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
General fourth-order Chapman–Enskog expansion of lattice Boltzmann schemes

In order to derive the equivalent partial differential equations of a lattice Boltzmann scheme, the Chapman Enskog expansion is very popular in the lattice Boltzmann community. A main drawback of this approach is the fact that multiscale expansions are used without any clear mathematical signification of the various variables and operators. Independently of this framework, the Taylor expansion method allows to obtain formally the equivalent partial differential equations. The general equivalency of these two approaches remains an open question. In this contribution, we prove that both approaches give identical results with acoustic scaling for a very general family of lattice Boltzmann schemes and up to fourth-order accuracy. Examples with a single scalar conservation illustrate our purpose.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Fluids
Computers & Fluids 物理-计算机:跨学科应用
CiteScore
5.30
自引率
7.10%
发文量
242
审稿时长
10.8 months
期刊介绍: Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信