心理学中基于实验的校准:优化设计考虑

IF 2.2 4区 心理学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Dominik R. Bach
{"title":"心理学中基于实验的校准:优化设计考虑","authors":"Dominik R. Bach","doi":"10.1016/j.jmp.2023.102818","DOIUrl":null,"url":null,"abstract":"<div><p>Psychological theories are often formulated at the level of latent, not directly observable, variables. Empirical measurement of latent variables ought to be valid. Classical psychometric validity indices can be difficult to apply in experimental contexts. A complementary validity index, termed retrodictive validity, is the correlation of theory-derived predicted scores with actually measured scores, in specifically designed calibration experiments. In the current note, I analyse how calibration experiments can be designed to maximise the information garnered and specifically, how to minimise the sample variance of retrodictive validity estimators. First, I harness asymptotic limits to analytically derive different distribution features that impact on estimator variance. Then, I numerically simulate various distributions with combinations of feature values. This allows deriving recommendations for the distribution of predicted values, and for resource investment, in calibration experiments. Finally, I highlight cases in which a misspecified theory is particularly problematic.</p></div>","PeriodicalId":50140,"journal":{"name":"Journal of Mathematical Psychology","volume":"117 ","pages":"Article 102818"},"PeriodicalIF":2.2000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022249623000743/pdfft?md5=67d69b64184de497db1e3d6b51cc26d6&pid=1-s2.0-S0022249623000743-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Experiment-based calibration in psychology: Optimal design considerations\",\"authors\":\"Dominik R. Bach\",\"doi\":\"10.1016/j.jmp.2023.102818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Psychological theories are often formulated at the level of latent, not directly observable, variables. Empirical measurement of latent variables ought to be valid. Classical psychometric validity indices can be difficult to apply in experimental contexts. A complementary validity index, termed retrodictive validity, is the correlation of theory-derived predicted scores with actually measured scores, in specifically designed calibration experiments. In the current note, I analyse how calibration experiments can be designed to maximise the information garnered and specifically, how to minimise the sample variance of retrodictive validity estimators. First, I harness asymptotic limits to analytically derive different distribution features that impact on estimator variance. Then, I numerically simulate various distributions with combinations of feature values. This allows deriving recommendations for the distribution of predicted values, and for resource investment, in calibration experiments. Finally, I highlight cases in which a misspecified theory is particularly problematic.</p></div>\",\"PeriodicalId\":50140,\"journal\":{\"name\":\"Journal of Mathematical Psychology\",\"volume\":\"117 \",\"pages\":\"Article 102818\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022249623000743/pdfft?md5=67d69b64184de497db1e3d6b51cc26d6&pid=1-s2.0-S0022249623000743-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Psychology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022249623000743\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Psychology","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022249623000743","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

心理学理论通常是在潜在的,而不是直接观察到的变量的水平上制定的。潜在变量的实证测量应该是有效的。经典的心理测量效度指标难以在实验环境中应用。互补效度指数,称为追溯效度,是理论推导的预测分数与实际测量分数的相关性,在专门设计的校准实验中。在当前的笔记中,我分析了如何设计校准实验以最大化获取的信息,特别是如何最小化追溯效度估计器的样本方差。首先,我利用渐近极限来解析地推导影响估计量方差的不同分布特征。然后,我数值模拟了各种特征值组合的分布。这允许在校准实验中得出预测值分布和资源投资的建议。最后,我强调了错误指定理论特别有问题的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experiment-based calibration in psychology: Optimal design considerations

Psychological theories are often formulated at the level of latent, not directly observable, variables. Empirical measurement of latent variables ought to be valid. Classical psychometric validity indices can be difficult to apply in experimental contexts. A complementary validity index, termed retrodictive validity, is the correlation of theory-derived predicted scores with actually measured scores, in specifically designed calibration experiments. In the current note, I analyse how calibration experiments can be designed to maximise the information garnered and specifically, how to minimise the sample variance of retrodictive validity estimators. First, I harness asymptotic limits to analytically derive different distribution features that impact on estimator variance. Then, I numerically simulate various distributions with combinations of feature values. This allows deriving recommendations for the distribution of predicted values, and for resource investment, in calibration experiments. Finally, I highlight cases in which a misspecified theory is particularly problematic.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematical Psychology
Journal of Mathematical Psychology 医学-数学跨学科应用
CiteScore
3.70
自引率
11.10%
发文量
37
审稿时长
20.2 weeks
期刊介绍: The Journal of Mathematical Psychology includes articles, monographs and reviews, notes and commentaries, and book reviews in all areas of mathematical psychology. Empirical and theoretical contributions are equally welcome. Areas of special interest include, but are not limited to, fundamental measurement and psychological process models, such as those based upon neural network or information processing concepts. A partial listing of substantive areas covered include sensation and perception, psychophysics, learning and memory, problem solving, judgment and decision-making, and motivation. The Journal of Mathematical Psychology is affiliated with the Society for Mathematical Psychology. Research Areas include: • Models for sensation and perception, learning, memory and thinking • Fundamental measurement and scaling • Decision making • Neural modeling and networks • Psychophysics and signal detection • Neuropsychological theories • Psycholinguistics • Motivational dynamics • Animal behavior • Psychometric theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信