{"title":"a2-巨球蛋白在椎间盘退变中的抗氧化行为。","authors":"Yuhong Chen, Huaixiang Wei, Feng Xu","doi":"10.5937/jomb0-39557","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>To clarify if a2-macroglobulin (α2M) has an antioxidative effect during the progression of the intervertebral disc degeneration (IVDD).</p><p><strong>Methods: </strong>The content of α2M and reactive oxygen species (ROS) were measured to compare mildly and severely degenerated human nucleus pulposus (NP) tissue by immunohistochemistry, mass spectrometry, and enzyme-linked immunosorbent assay (ELISA). Additionally, exogenic α2M was used to culture severely degenerated NP tissue in vitro. The effects of α2M on hypochlorite (HOCl)-treated NP cells were evaluated, containing antioxidative enzymes, ROS level, collagen II, and aggrecan expression, MMP3/13, and ADAMTS4/5.</p><p><strong>Results: </strong>ROS level increased in severely degenerated NP, accompanying with a decreased α2M content. Supplement of α2M could decrease the ROS level of cultured NP in vitro, meanwhile, the MMP13 and ADAMTS4 expression were also reduced. It was found that treatment of HOCl resulted in oxidative damage to NP cells and decreased α2M expression in a dose and time-dependent manner. Furthermore, exogenic α2M stimulation reversed the HOCl-triggered ROS accumulation. The promotion of SOD1/2, CAT, GPX1, collagen II, and aggrecan, and suppression of MMP3/13, ADAMTS4/5 expression caused by α2M were also observed.</p><p><strong>Conclusions: </strong>Our study indicates that α2M has an antioxidative ability in degenerated NP cells by promoting the antioxidative enzyme production.</p>","PeriodicalId":16175,"journal":{"name":"Journal of Medical Biochemistry","volume":"42 2","pages":"206-213"},"PeriodicalIF":2.0000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10040188/pdf/","citationCount":"0","resultStr":"{\"title\":\"Antioxidative behavior of a2-macroglobulin in intervertebral disc degeneration.\",\"authors\":\"Yuhong Chen, Huaixiang Wei, Feng Xu\",\"doi\":\"10.5937/jomb0-39557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>To clarify if a2-macroglobulin (α2M) has an antioxidative effect during the progression of the intervertebral disc degeneration (IVDD).</p><p><strong>Methods: </strong>The content of α2M and reactive oxygen species (ROS) were measured to compare mildly and severely degenerated human nucleus pulposus (NP) tissue by immunohistochemistry, mass spectrometry, and enzyme-linked immunosorbent assay (ELISA). Additionally, exogenic α2M was used to culture severely degenerated NP tissue in vitro. The effects of α2M on hypochlorite (HOCl)-treated NP cells were evaluated, containing antioxidative enzymes, ROS level, collagen II, and aggrecan expression, MMP3/13, and ADAMTS4/5.</p><p><strong>Results: </strong>ROS level increased in severely degenerated NP, accompanying with a decreased α2M content. Supplement of α2M could decrease the ROS level of cultured NP in vitro, meanwhile, the MMP13 and ADAMTS4 expression were also reduced. It was found that treatment of HOCl resulted in oxidative damage to NP cells and decreased α2M expression in a dose and time-dependent manner. Furthermore, exogenic α2M stimulation reversed the HOCl-triggered ROS accumulation. The promotion of SOD1/2, CAT, GPX1, collagen II, and aggrecan, and suppression of MMP3/13, ADAMTS4/5 expression caused by α2M were also observed.</p><p><strong>Conclusions: </strong>Our study indicates that α2M has an antioxidative ability in degenerated NP cells by promoting the antioxidative enzyme production.</p>\",\"PeriodicalId\":16175,\"journal\":{\"name\":\"Journal of Medical Biochemistry\",\"volume\":\"42 2\",\"pages\":\"206-213\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10040188/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Biochemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.5937/jomb0-39557\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Biochemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5937/jomb0-39557","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Antioxidative behavior of a2-macroglobulin in intervertebral disc degeneration.
Background: To clarify if a2-macroglobulin (α2M) has an antioxidative effect during the progression of the intervertebral disc degeneration (IVDD).
Methods: The content of α2M and reactive oxygen species (ROS) were measured to compare mildly and severely degenerated human nucleus pulposus (NP) tissue by immunohistochemistry, mass spectrometry, and enzyme-linked immunosorbent assay (ELISA). Additionally, exogenic α2M was used to culture severely degenerated NP tissue in vitro. The effects of α2M on hypochlorite (HOCl)-treated NP cells were evaluated, containing antioxidative enzymes, ROS level, collagen II, and aggrecan expression, MMP3/13, and ADAMTS4/5.
Results: ROS level increased in severely degenerated NP, accompanying with a decreased α2M content. Supplement of α2M could decrease the ROS level of cultured NP in vitro, meanwhile, the MMP13 and ADAMTS4 expression were also reduced. It was found that treatment of HOCl resulted in oxidative damage to NP cells and decreased α2M expression in a dose and time-dependent manner. Furthermore, exogenic α2M stimulation reversed the HOCl-triggered ROS accumulation. The promotion of SOD1/2, CAT, GPX1, collagen II, and aggrecan, and suppression of MMP3/13, ADAMTS4/5 expression caused by α2M were also observed.
Conclusions: Our study indicates that α2M has an antioxidative ability in degenerated NP cells by promoting the antioxidative enzyme production.
期刊介绍:
The JOURNAL OF MEDICAL BIOCHEMISTRY (J MED BIOCHEM) is the official journal of the Society of Medical Biochemists of Serbia with international peer-review. Papers are independently reviewed by at least two reviewers selected by the Editors as Blind Peer Reviews. The Journal of Medical Biochemistry is published quarterly.
The Journal publishes original scientific and specialized articles on all aspects of
clinical and medical biochemistry,
molecular medicine,
clinical hematology and coagulation,
clinical immunology and autoimmunity,
clinical microbiology,
virology,
clinical genomics and molecular biology,
genetic epidemiology,
drug measurement,
evaluation of diagnostic markers,
new reagents and laboratory equipment,
reference materials and methods,
reference values,
laboratory organization,
automation,
quality control,
clinical metrology,
all related scientific disciplines where chemistry, biochemistry, molecular biology and immunochemistry deal with the study of normal and pathologic processes in human beings.