机器学习技术在猴痘疾病预测中的应用综述

Shailima Rampogu
{"title":"机器学习技术在猴痘疾病预测中的应用综述","authors":"Shailima Rampogu","doi":"10.1016/j.soh.2023.100040","DOIUrl":null,"url":null,"abstract":"<div><p>Infectious diseases have posed a global threat recently, progressing from endemic to pandemic. Early detection and finding a better cure are methods for curbing the disease and its transmission. Machine learning (ML) has demonstrated to be an ideal approach for early disease diagnosis. This review highlights the use of ML algorithms for monkeypox (MP). Various models, such as CNN, DL, NLP, Naïve Bayes, GRA-TLA, HMD, ARIMA, SEL, Regression analysis, and Twitter posts were built to extract useful information from the dataset. These findings show that detection, classification, forecasting, and sentiment analysis are primarily analyzed. Furthermore, this review will assist researchers in understanding the latest implementations of ML in MP and further progress in the field to discover potent therapeutics.</p></div>","PeriodicalId":101146,"journal":{"name":"Science in One Health","volume":"2 ","pages":"Article 100040"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949704323000343/pdfft?md5=40f19ae59356f945ed1ddc6b68084110&pid=1-s2.0-S2949704323000343-main.pdf","citationCount":"1","resultStr":"{\"title\":\"A review on the use of machine learning techniques in monkeypox disease prediction\",\"authors\":\"Shailima Rampogu\",\"doi\":\"10.1016/j.soh.2023.100040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Infectious diseases have posed a global threat recently, progressing from endemic to pandemic. Early detection and finding a better cure are methods for curbing the disease and its transmission. Machine learning (ML) has demonstrated to be an ideal approach for early disease diagnosis. This review highlights the use of ML algorithms for monkeypox (MP). Various models, such as CNN, DL, NLP, Naïve Bayes, GRA-TLA, HMD, ARIMA, SEL, Regression analysis, and Twitter posts were built to extract useful information from the dataset. These findings show that detection, classification, forecasting, and sentiment analysis are primarily analyzed. Furthermore, this review will assist researchers in understanding the latest implementations of ML in MP and further progress in the field to discover potent therapeutics.</p></div>\",\"PeriodicalId\":101146,\"journal\":{\"name\":\"Science in One Health\",\"volume\":\"2 \",\"pages\":\"Article 100040\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949704323000343/pdfft?md5=40f19ae59356f945ed1ddc6b68084110&pid=1-s2.0-S2949704323000343-main.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science in One Health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949704323000343\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science in One Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949704323000343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

传染病最近已构成全球性威胁,从地方性疾病发展为大流行疾病。早期发现和找到更好的治疗方法是遏制这种疾病及其传播的方法。机器学习(ML)已被证明是早期疾病诊断的理想方法。这篇综述强调了ML算法在猴痘(MP)中的应用。建立各种模型,如CNN、DL、NLP、Naïve贝叶斯、GRA-TLA、HMD、ARIMA、SEL、回归分析和Twitter帖子,从数据集中提取有用的信息。这些发现表明,检测、分类、预测和情感分析是主要的分析。此外,这篇综述将有助于研究人员了解ML在MP中的最新实现和在该领域的进一步进展,以发现有效的治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A review on the use of machine learning techniques in monkeypox disease prediction

Infectious diseases have posed a global threat recently, progressing from endemic to pandemic. Early detection and finding a better cure are methods for curbing the disease and its transmission. Machine learning (ML) has demonstrated to be an ideal approach for early disease diagnosis. This review highlights the use of ML algorithms for monkeypox (MP). Various models, such as CNN, DL, NLP, Naïve Bayes, GRA-TLA, HMD, ARIMA, SEL, Regression analysis, and Twitter posts were built to extract useful information from the dataset. These findings show that detection, classification, forecasting, and sentiment analysis are primarily analyzed. Furthermore, this review will assist researchers in understanding the latest implementations of ML in MP and further progress in the field to discover potent therapeutics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信